
Math 3070/6070 Introduction to Probability
Mon/Wed/Fri 11:00am - 11:50am

Instructor: Dr. Xiang Ji, xji4@tulane.edu

Lecture 1:Aug 22

Today

• Introduction

• Introduce yourself

• Course logistics

What is this course about?

This course will provide a calculus-based introduction to probability theory. Material cov-
ered will include fundamental axioms of probability, combinatorics, discrete and continuous
random variables, multivariate distributions, expectation, and limit theorems, generally fol-
lowing Chapters 1-5 of the textbook. This course is a critical prerequisite for more advanced
work in statistical theory and analysis.

Prerequisite

• Calculus

Why learn probability

• The subject of probability theory is the foundation upon which all of statistics is built.

• It provides you a tool to model

– populations

– experiments

– almost anything else that could be considered a random phenomenon

– example topics in Data Analysis course

• Through these models, statisticians are able to draw inferences about populations based
on examination of only a part of the whole.

• A must have for any Data Scientists.
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What this course WILL NOT do for you

It will not help you:

• Beat the casino at blackjack (although it may convince you that it is better not to
gamble, or that a casino is a great business).

• Answer your friends’ silly questions such as “What are the chances it will rain tomor-
row?” (although it might make you think of ways that you might model and compute
it).

Syllabus

Check course website frequently for updates and announcements.

https://tulane-math-3070-2022.github.io/

HW submission

Students are required to submit hand-written homework in recitations to the TA. Homework
assignments are expected every two weeks with 4-5 problems at a time.

Presentations

Do we want to have a 5 bonus point towards the final grade with a presentation?

Last year comments

Not really, this is my first time teaching this course. There will be an internal mid-term-ish
evaluation for this course. Will remember to go over them.
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Lecture 2:Aug 24

Last time

• Introduction

• Introduce yourself

• Course logistics

Today

• Set theory (1.1)

• Axiomatic Foundations (1.2)

Set Theory

One of the main objectives of a statistician is to draw conclusions about a population of
objects by conducting an experiment. The first step in this endeavor is to identify the
possible outcomes or, in statistical terminology, the sample space.

Definition The set, S, of all possible outcomes of a particular experiment is called the sample
space for the experiment.

Example The sample space of

• tossing a coin just once, contains two outcomes, heads and tails

S “ tH,T u

• observing reported SAT scores of randomly selected students at a certain university

S “ t200, 210, 220, . . . , 780, 790, 800u

• an experiment where the observation is reaction time to a certain stimulus

S “ p0,8q

Definition An event is any collection of possible outcomes of an experiment, that is , any
subset of S (including S itself).

Let A be an event,

• A is a subset of S,

• event A occurs if the outcome of the experiment is in the set A,

• we generally speak of the probability of an event, rather than a set.
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Set operations:

• Containment:
A Ă B ðñ x P A ùñ x P B

• Equality:
A “ B ðñ A Ă B and B Ă A

• Union: the union of A and B, written as A Y B, is the set of elements that belong to
either A or B or both

A Y B “ tx : x P A or x P Bu.

• Intersection: the intersection of A and B, written A X B, is the set of elements that
belong to both A and B:

A X B “ tx : x P A and x P Bu.

• Complementation: the complement of A, written Ac, is the set of all elements that are
not in A:

Ac
“ tx : x R Au.

Theorem For any three events, A, B, and C, defined on a sample space S,

1. Commutativity
A Y B “ B Y A,

A X B “ B X A;

2. Associativity
A Y pB Y Cq “ pA Y Bq Y C,

A X pB X Cq “ pA X Bq X C;

3. Distributive Laws
A X pB Y Cq “ pA X Bq Y pA X Cq,

A Y pB X Cq “ pA Y Bq X pA Y Cq;

4. DeMorgan’s Laws
pA Y Bq

c
“ Ac

X Bc,

pA X Bq
c

“ Ac
Y Bc;

We show the proof of A X pB Y Cq “ pA X Bq Y pA X Cq in the distributive laws. Caution:
Venn diagrams are helpful in visualization, but they do not constitute a formal proof. To
prove that two sets are equal, we need to show that each set contains the other.
proof:
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• A X pB Y Cq Ă pA X Bq Y pA X Cq:
Let x P pA X pB Y Cqq. By definition of intersection, x P pB Y Cq that is, either x P B
or x P C. Since x also must be in A, we have that either x P pA X Bq or x P pA X Cq;
therefore, x P ppA X Bq Y pA X Cqq.

• pA X Bq Y pA X Cq Ă A X pB Y Cq:
Let x P ppA X Bq Y pA X Cqq. This implies that x P pA X Bq or x P pA X Cq. If
x P pA X Bq, then x is in both A and B. Since x P B, then x P pB Y Cqand thus
x P pA X pB Y Cqq. It follows the same argument when x P pA X Cq, we still have
x P pA X pB Y Cqq.

Definition Two events A and B are disjoint (or mutually exclusive) if A X B “ H. The
events A1, A2, . . . are pairwise disjoint (or mutually exclusive) if Ai X Aj “ H for all i ‰ j.

Definition If A1, A2, . . . are pairwise disjoint and Y8
i“1Ai “ A1 Y A2 Y ¨ ¨ ¨ “ S, then the

collection of A1, A2, . . . forms a partition of S.

Example The sets Ai “ ri, i ` 1q, i “ 0, 1, 2, . . . form a partition of r0,8q.

Basics of Probability Theory

When an experiment is performed, the realization of the experiment is an outcome in the
sample space. If the experiment is performed a number of times, then

• different outcomes may occur each time

• some outcomes may repeat

• the “frequency of occurrence” of an outcome can be thought of as a probability

However, we do not define probabilities in terms of frequencies but instead take the math-
ematically simpler axiomatic approach. The axiomatic approach is not concerned with the
interpretations of probabilities, but is concerned only that the probabilities are defined by a
function satisfying the axioms. Interpretations of the probabilities are quite another matter:

• The “frequency of occurrence” of an event is one example of a particular interpretation
of probability.

• Another possible interpretation is a subjective one, where we can think of the proba-
bility as a belief in the chance of an event occurring.

Axiomatic Foundations

For each event A in the sample space S, we want to associate with A a number between
zero and one that will be called the probability of A, denoted by PrpAq. The domain of Pr

is the set where the arguments of the function Prp9q are defined. It is natural to define the
domain of Pr as all subsets of S, that is for each A Ă S, we define PrpAq as the probability
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that A occurs. However, there are some technical difficulties to overcome which requires us
to familiarize with the following.

Definition A collection of subsets of S is called a sigma algebra (or Borel field), denoted by
B, if it satisfies the following three properties:

1. H P B (the empty set is an element of B).

2. If A P B, then Ac P B (B is closed under complementation).

3. If A1, A2, ¨ ¨ ¨ P B, then Y8
i“1Ai P B (B is closed under countable unions).

From Property (1) and (2), we see that the empty set and its complement S (since S “ Hc)
are always in a sigma algebra. In fact, they construct the trivial algebra tH, Su which is the
smallest sigma algebra.

By DeMorgan’s Law, (3) can be replaced by:

31. if A1, A2, ¨ ¨ ¨ P B, then X
8
i“1 Ai P B.

This is because:

pY
8
i“1A

c
iq

c
“ X

8
i“1Ai.

Example If S is finite or countable (where the elements of S can be put into 1 ´ 1 corre-
spondence with a subset of the integers), then these technicalities really do not arise, for we
we define for a given sample space S,

B “ tall subsets of S, including S itselfu.

If S has n elements, there are 2n sets in B (why?).[hint: for each element, it is either in or
out of a subset, so 2 choices].

Example Let S “ p´8,8q, the real line. Then B is chosen to contain all sets of the form

ra, bs, pa, bs, pa, bq, and ra, bq

for all real numbers a and b. Also, from the properties of B, it follows that B contains all
sets that can be formed by taking (possibly countably infinite) unions and intersections of
sets of the above varieties.

We now define a probability function.

Definition Given a sample space S and an associated sigma algebra B, a probability function
is a function Pr with domain B that satisfies

1. PrpAq ě 0 for all A P B.

2. PrpSq “ 1.
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3. If A1, A2, ¨ ¨ ¨ P B are pairwise disjoint, then PrpY8
i“1Aiq “

ř8

i“1 PrpAiq.

The above three properties are usually referred to as the Axioms of Probability (or the
Kolmogorov Axioms, after A. Kolmogorov, one of the fathers of probability theory). Any
function that satisfies the Axioms of Probability is called a probability function.

Example Consider the simple experiment of tossing a fair coin (just once), so S “ tH,T u.
A reasonable probability function is the one that assigns equal probabilities to heads and
tails, that is,

PrptHuq “ PrptT uq.

Since S “ tHu Y tT u, we have , from Axiom 1, PrptHu Y tT uq “ 1. Also, tHu and tT u are
disjoint, so PrptHu Y tT uq “ PrptHuq ` PrptT uq. Collectively, we have

PrptHuq “ PrptT uq

PrptHu Y tT uq “ 1

PrptHu Y tT uq “ PrptHuq ` PrptT uq

Therefore, PrptHuq “ PrptT uq “ 1
2
.
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Lecture 3: Aug 26

Last time

• Set theory (1.1)

• Axiomatic Foundations (1.2)

Today

• 5 bonus point presentation results

• Axiomatic Foundations (1.2)

• Calculus of Probabilities (1.2)

• Conditional Probability (1.3)

Example If S is finite or countable (where the elements of S can be put into 1 ´ 1 corre-
spondence with a subset of the integers), then these technicalities really do not arise, for we
we define for a given sample space S,

B “ tall subsets of S, including S itselfu.

If S has n elements, there are 2n sets in B (why?).[hint: for each element, it is either in or
out of a subset, so 2 choices].

Example Let S “ p´8,8q, the real line. Then B is chosen to contain all sets of the form

ra, bs, pa, bs, pa, bq, and ra, bq

for all real numbers a and b. Also, from the properties of B, it follows that B contains all
sets that can be formed by taking (possibly countably infinite) unions and intersections of
sets of the above varieties.

We now define a probability function.

Definition Given a sample space S and an associated sigma algebra B, a probability function
is a function Pr with domain B that satisfies

1. PrpAq ě 0 for all A P B.

2. PrpSq “ 1.

3. If A1, A2, ¨ ¨ ¨ P B are pairwise disjoint, then PrpY8
i“1Aiq “

ř8

i“1 PrpAiq.

The above three properties are usually referred to as the Axioms of Probability (or the
Kolmogorov Axioms, after A. Kolmogorov, one of the fathers of probability theory). Any
function that satisfies the Axioms of Probability is called a probability function.
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Example Consider the simple experiment of tossing a fair coin (just once), so S “ tH,T u.
A reasonable probability function is the one that assigns equal probabilities to heads and
tails, that is,

PrptHuq “ PrptT uq.

Since S “ tHu Y tT u, we have , from Axiom 1, PrptHu Y tT uq “ 1. Also, tHu and tT u are
disjoint, so PrptHu Y tT uq “ PrptHuq ` PrptT uq. Collectively, we have

PrptHuq “ PrptT uq

PrptHu Y tT uq “ 1

PrptHu Y tT uq “ PrptHuq ` PrptT uq

Therefore, PrptHuq “ PrptT uq “ 1
2
.

Caculus of Probabilities

We start with some fairly self-evident properties of the probability function when applied to
a single event.

Theorem If Pr is a probability function and A is any set in B, then

1. PrpHq “ 0, where H is the empty set;

2. PrpAq ď 1;

3. PrpAcq “ 1 ´ PrpAq.

proof:

• It’s easy to prove (3) first. Since

– PrpA Y Acq “ PrpSq “ 1,

– A and Ac are disjoint, by axiom (3), PrpA Y Acq “ PrpAq ` PrpAcq.

so that PrpAq ` PrpAcq “ PrpSq “ 1

• with (3) proved, (1) is simple. because we know that

– S Y H “ S,

– S X H “ H, they are disjoint,

so that PrpHq ` PrpSq “ PrpH Y Sq “ PrpSq.

• now for (2), PrpAq “ 1 ´ PrpAcq ď 1, by axiom (1).

Theorem If Pr is a probability function and A and B are any sets in B, then

1. PrpB X Acq “ PrpBq ´ PrpA X Bq;

2. PrpA Y Bq “ PrpAq ` PrpBq ´ PrpA X Bq;
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3. If A Ă B, then PrpAq ď PrpBq.

proof:

1. For (1), we have B “ tB X Au Y tB X Acu and tB X Au X tB X Acu “ H, therefore

PrpBq “ PrptB X Au Y tB X Ac
uq

2. For (2), we plug in (1) first such that we only need to show PrpA Y Bq “ PrpAq `

PrpB XAcq. Since AX tB XAcu “ H and AYB “ AY tB XAcu (use a Venn diagram,
or see Exercise 1.2), we have PrpA Y Bq “ PrpAq ` PrpB X Acq.

3. For (3), if A Ă B, then A X B “ A. Then using (1), we have

0 ď PrpB X Ac
q “ PrpBq ´ PrpAq

Formula (2) in the above theorem gives a useful inequality for the probability of an intersec-
tion (Bonferroni’s Inequality):

PrpA X Bq ě PrpAq ` PrpBq ´ 1.

Theorem If Pr is a probability function, then

1. PrpAq “
ř8

i“1 PrpA X Ciq for any partition C1, C2, . . . ;

2. PrpY8
i“1Aiq ď

ř8

i“1 PrpAiq for any sets A1, A2, . . . .

where (1) is also referred to as “Total probability” and (2) is Boole’s inequality.
proof:
By definition, since C1, C2, . . . form a partition, we have Ci X Cj “ H for all i ‰ j, and
S “ Y8

i“1Ci. Therefore,

A “ A X S “ A X pY
8
i“1Ciq “ Y

8
i“1pA X Ciq,

where the last equality follows from the Distributive Law. Since tA X Ciu X tA X Cju “ H

(i.e. A X Ci and A X Cj are disjoint), we have

PrpAq “ Pr pY
8
i“1pA X Ciqq “

8
ÿ

i“1

PrpA X Ciq.

To establish Boole’s Inequality, we first construct a disjoint collection A˚
1 , A

˚
2 , . . . , with the

property that Y8
i“1A

˚
i “ Y8

i“1Ai. We define A˚
i by

A˚
1 “ A1, A

˚
i “ Aiz

`

Y
i´1
j“1Aj

˘

, i “ 2, 3, . . . ,

where the notation AzB denotes the part of A that does not intersect with B. In other
words, AzB “ A X Bc. It’s easy to see that Y8

i“1A
˚
i “ Yi

i“1nftyAi, and we have

Pr pY
8
i“1Aiq “ Pr pY

8
i“1A

˚
i q “

8
ÿ

i“1

PrpA˚
i q
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where the last equality holds because A˚
i are disjoint. To see this, consider any pair of

A˚
i X A˚

k, i ą k, then

A˚
i X A˚

k “
␣

AizpY
i´1
j“1Ajq

(

X
␣

AkzpY
k´1
j“1Ajq

(

“
␣

Ai X pY
i´1
j“1Ajq

c
(

X
␣

Ak X pY
k´1
j“1Ajq

c
(

“
␣

Ai X
`

X
i´1
j“1A

c
j

˘(

X
␣

Ak X
`

X
k´1
j“1A

c
j

˘(

“ H.

Lastly, we have PrpA˚
i q ď PrpAiq.

Conditional Probability

All of the probabilities that we have dealt with thus far have been unconditional probabilities.
A sample space was defined and all probabilities were calculated with respect to that sample
space. In many instances, however, we are in a position to update the sample space based
on new information. In such cases we want to be able to update probability calculations or
to calculate conditional probabilities.

Definition If A and B are events in S, and PrpBq ą 0, then the conditional probability of A
given B, written PrpA|Bq, is

PrpA|Bq “
PrpA X Bq

PrpBq
.

Note that B becomes the sample space now: PrpB|Bq “ 1.

Example Four cards are dealt from the top of a well-shuffled deck. What is the probability
that they are the four aces? (there are in total 52 cards)

solution:
We define two events first. Let A be the event {4 aces on top}, and B be the event {the
first card on top is an ace}. For a well-shuffled deck, all groups of 4 cards are equally likely.

In total, there are

˜

52

4

¸

“
52!p52´4q!

4!
“ 270, 725 distinct groups. Therefore, the probability

of event A is PrpAq “ 1
270,725

.

Note,

˜

n

m

¸

reads “from n choose m” (for m ď n) and calculates by

˜

n

m

¸

“
n!pn´mq!

m!
that

gives the number of distinct combinations of choosing m elements from n total elements.
Now, let’s calculate PrpA|Bq. First of all, A Ă B, so that we have PrpA X Bq “ PrpAq. For
PrpBq, having an ace on top instead of the other 12 kinds, PrpBq “ 1

13
. Then PrpA|Bq “

PrpAXBq

PrpBq
“

PrpAq

PrpBq
“ 1

20,825
.
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Theorem (Bayes’ Rule) Let A1, A2, . . . be a partition of the sample space, and let B be any
set. Then, for each i “ 1, 2, . . . ,

PrpAi|Bq “
PrpB|AiqPrpAiq

ř8

j“1 PrpB|AjqPrpAjq
.

proof:
By “Total probability”, we have PrpBq “

ř8

j“1 PrpBXAiq which is the denominator. There-

fore, PrpAi|Bq “
PrpAiXBq

PrpBq
“

PrpB|AiqPrpAiq
ř8

j“1 PrpBXAiq
.

Independence

Definition Two events, A and B, are statistically independent if

PrpA X Bq “ PrpAqPrpBq

Note that independence could have been defined using Bayes’ rule by PrpA|Bq “ PrpAq or
PrpB|Aq “ PrpBq as long as PrpAq ą 0 or PrpBq ą 0. More notation, often statisticians
omit X when writing intersection in a probability function which means PrpABq “ PrpA X

Bq. Sometime, statisticians use comma (,) to replace X inside a probability function too,
PrpA,Bq “ PrpA X Bq.

Theorem If A and B are independent events, then the following pairs are also independent.

1. A and Bc,

2. Ac and B,

3. Ac and Bc.
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Lecture 4: Aug 29

Last time

• Axiomatic Foundations (1.2)

• Calculus of Probabilities (1.2)

Today

• HW1 due 09/02, submit in the following recitation

• Conditional Probability (1.3)

• Independence (1.3)

Theorem If Pr is a probability function and A and B are any sets in B, then

1. PrpB X Acq “ PrpBq ´ PrpA X Bq;

2. PrpA Y Bq “ PrpAq ` PrpBq ´ PrpA X Bq;

3. If A Ă B, then PrpAq ď PrpBq.

proof:

1. For (1), we have B “ tB X Au Y tB X Acu and tB X Au X tB X Acu “ H, therefore

PrpBq “ PrptB X Au Y tB X Ac
uq

2. For (2), we plug in (1) first such that we only need to show PrpA Y Bq “ PrpAq `

PrpB XAcq. Since AX tB XAcu “ H and AYB “ AY tB XAcu (use a Venn diagram,
or see Exercise 1.2), we have PrpA Y Bq “ PrpAq ` PrpB X Acq.

3. For (3), if A Ă B, then A X B “ A. Then using (1), we have

0 ď PrpB X Ac
q “ PrpBq ´ PrpAq

Formula (2) in the above theorem gives a useful inequality for the probability of an intersec-
tion (Bonferroni’s Inequality):

PrpA X Bq ě PrpAq ` PrpBq ´ 1.

Theorem If Pr is a probability function, then

1. PrpAq “
ř8

i“1 PrpA X Ciq for any partition C1, C2, . . . ;

2. PrpY8
i“1Aiq ď

ř8

i“1 PrpAiq for any sets A1, A2, . . . .
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where (1) is also referred to as “Total probability” and (2) is Boole’s inequality.
proof:
By definition, since C1, C2, . . . form a partition, we have Ci X Cj “ H for all i ‰ j, and
S “ Y8

i“1Ci. Therefore,

A “ A X S “ A X pY
8
i“1Ciq “ Y

8
i“1pA X Ciq,

where the last equality follows from the Distributive Law. Since tA X Ciu X tA X Cju “ H

(i.e. A X Ci and A X Cj are disjoint), we have

PrpAq “ Pr pY
8
i“1pA X Ciqq “

8
ÿ

i“1

PrpA X Ciq.

To establish Boole’s Inequality, we first construct a disjoint collection A˚
1 , A

˚
2 , . . . , with the

property that Y8
i“1A

˚
i “ Y8

i“1Ai. We define A˚
i by

A˚
1 “ A1, A

˚
i “ Aiz

`

Y
i´1
j“1Aj

˘

, i “ 2, 3, . . . ,

where the notation AzB denotes the part of A that does not intersect with B. In other
words, AzB “ A X Bc. It’s easy to see that Y8

i“1A
˚
i “ Y8

i“1Ai, and we have

Pr pY
8
i“1Aiq “ Pr pY

8
i“1A

˚
i q “

8
ÿ

i“1

PrpA˚
i q

where the last equality holds because A˚
i are disjoint. To see this, consider any pair of

A˚
i X A˚

k, i ą k, then

A˚
i X A˚

k “
␣

AizpY
i´1
j“1Ajq

(

X
␣

AkzpY
k´1
j“1Ajq

(

“
␣

Ai X pY
i´1
j“1Ajq

c
(

X
␣

Ak X pY
k´1
j“1Ajq

c
(

“
␣

Ai X
`

X
i´1
j“1A

c
j

˘(

X
␣

Ak X
`

X
k´1
j“1A

c
j

˘(

“ H.

Lastly, we have PrpA˚
i q ď PrpAiq.

Conditional Probability

All of the probabilities that we have dealt with thus far have been unconditional probabilities.
A sample space was defined and all probabilities were calculated with respect to that sample
space. In many instances, however, we are in a position to update the sample space based
on new information. In such cases we want to be able to update probability calculations or
to calculate conditional probabilities.

Definition If A and B are events in S, and PrpBq ą 0, then the conditional probability of A
given B, written PrpA|Bq, is

PrpA|Bq “
PrpA X Bq

PrpBq
.
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Note that B becomes the sample space now: PrpB|Bq “ 1. For disjoint events, if AXB “ H,
then PrpA|Bq “ 0 and PrpB|Aq “ 0.

Conditional probability satisfies the axioms of probability:

1. PrpS|Bq “ 1,

2. PrpA|Bq ě 0,

3. If A1, A2, . . . are mutually exclusive events, then PrpY8
i“1Ai|Bq “

ř8

i“1 PrpAi|Bq

Example Four cards are dealt from the top of a well-shuffled deck. What is the probability
that they are the four aces? What is the probability of getting four aces at the top if knowing
the first card is an ace? (there are in total 52 cards)

solution:
We define two events first. Let A be the event {4 aces on top}, and B be the event {the
first card on top is an ace}. For a well-shuffled deck, all groups of 4 cards are equally likely.

In total, there are

˜

52

4

¸

“
52!p52´4q!

4!
“ 270, 725 distinct groups. Therefore, the probability

of event A is PrpAq “ 1
270,725

.

Note,

˜

n

m

¸

reads “from n choose m” (for m ď n) and calculates by

˜

n

m

¸

“ n!
m!pn´mq!

that

gives the number of distinct combinations of choosing m elements from n total elements.
Now, let’s calculate PrpA|Bq. First of all, A Ă B, so that we have PrpA X Bq “ PrpAq. For
PrpBq, having an ace on top instead of the other 12 kinds, PrpBq “ 1

13
. Then PrpA|Bq “

PrpAXBq

PrpBq
“

PrpAq

PrpBq
“ 1

20,825
.

Theorem (Bayes’ Rule) Let A1, A2, . . . be a partition of the sample space, and let B be any
set. Then, for each i “ 1, 2, . . . ,

PrpAi|Bq “
PrpB|AiqPrpAiq

ř8

j“1 PrpB|AjqPrpAjq
.

proof:
By “Total probability”, we have PrpBq “

ř8

j“1 PrpBXAiq which is the denominator. There-

fore, PrpAi|Bq “
PrpAiXBq

PrpBq
“

PrpB|AiqPrpAiq
ř8

j“1 PrpBXAiq
.

Independence

Definition Two events, A and B, are statistically independent if

PrpA X Bq “ PrpAqPrpBq

Note that independence could have been defined using Bayes’ rule by PrpA|Bq “ PrpAq or
PrpB|Aq “ PrpBq as long as PrpAq ą 0 or PrpBq ą 0. More notation, often statisticians

15



omit X when writing intersection in a probability function which means PrpABq “ PrpA X

Bq. Sometime, statisticians use comma (,) to replace X inside a probability function too,
PrpA,Bq “ PrpA X Bq.

16



Lecture 5: Aug 31

Last time

• Conditional Probability (1.3)

• Independence (1.3)

Today

• HW1 due 09/02

• Random variables (1.4)

• Distribution Functions (1.5)

Theorem If A and B are independent events, then the following pairs are also independent.

1. A and Bc,

2. Ac and B,

3. Ac and Bc.

proof:
For (1),

PrpA,Bc
q “ PrpAq ´ PrpA,Bq

“ PrpAq ´ PrpAqPrpBq

“ PrpAqp1 ´ PrpBqq

“ PrpAqPrpBc
q

For (2), we just need to switch A and B.
For (3), we have Ac and B are independent, then we can treat Ac as A1 and B as B1, then
A1 and B1c are independent which is Ac and Bc are independent.
Alternatively, for (2),

PrpAc, Bq “ PrpAc
|BqPrpBq

“ r1 ´ PrpA|BqsPrpBq

“ r1 ´ PrpAqsPrpBq

“ PrpAc
qPrpBq.

And for (3),
PrpAc, Bc

q “ PrpAc
q ´ PrpAc, Bq

“ PrpAc
q ´ PrpAc

qPrpBq

“ PrpAc
qPrpBc

q.

17



Example Let the sample space S consist of the 3! permutations of the letters a, b, and c
along with the three triples of each letter. Thus,

S “

$

&

%

aaa bbb ccc
abc bca cba
acb bac cab

,

.

-

.

Furthermore, let each element of S have probability 1
9
. Define

Ai “ tith place in the triple is occupied by au.

What are the values for PrpAiq, i “ 1, 2, 3? Are they pairwise independent?
solution
It is easy to count that

PrpAiq “
1

3
, i “ 1, 2, 3,

and

PrpA1, A2q “ PrpA1, A3q “ PrpA2, A3q “
1

9

so that Ais are pairwise independent.

Definition* A collection of events A1, . . . , An are mutually independent if for any subcollec-
tion Ai1 , . . . , Aik , we have

Pr
`

X
k
j“1Aij

˘

“

k
ź

j“1

PrpAijq.

Random Variables

In many experiments, it is easier to deal with a summary variable than with the original
probability structure.

Example consider an opinion poll, we might decide to ask 50 people whether they agree
or disagree with a certain issue. If we record a “1” for agree and “0” for disagree, the
sample space for this experiment has 250 elements (all length 50 strings consist of 1s and
0s). However, if we are only interested in the number of people who agree, we may define a
variable X “ number of 1s recorded out of 50. Then, the sample space for X is the set of
integers t0, 1, 2, . . . , 50u.

Definition A random variable (r.v.) is a function from a sample space S into the real
numbers.

18



Example In some experiments random variables are implicitly used

Examples of random variables

Experiment Random variable
Toss two dice X “ sum of numbers
Toss a coin 25 times X “ number of heads in 25 tosses
Apply different amounts of
fertilizer to corn plants X “ yield / acre

In defining a random variable, we have also defined a new sample space (the range of the
random variable).

19



Lecture 6: Sept 2

Last time

• Random variables

Today

• HW1 due today

• no class next Monday (Labor day)

• Presentation: Approximate Bayesian Computation

• Presentation: Karl Pearson
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Lecture 7: Sept 7

Last time

• Presentations

Today

• HW2 posted (due: Sept 15th)

• No lecture, but reviews on Fridays with two presentations

• Random variables

• Distribution Functions

• Types of Random Variables

Induced probability function Suppose we have a sample space S “ ts1, s2, . . . , snu with a
probability function Pr defined on the original sample space. We define a random variable
X with range X “ tx1, . . . , xmu. We can define a probability function PrX on X in the
following way. We will observe X “ xi if an only if the outcome of the random experiment
is an sj P S such that Xpsjq “ xi. Therefore,

PrXpX “ xiq “ Prptsj P S : Xpsjq “ xiuq,

defines an induced probability function on X , defined in terms of the original function Pr.

We will write PrpX “ xiq rather than PrXpX “ xiq for simplicity. Note on notation: random
variables will always be denoted with uppercase leeters and the realized values of the variable
(or its range) will be denoted by the corresponding lowercase letters.

Example Consider the experiment of tossing a fair coin three times. Define the random
variable X to be the number of heads obtained in the three tosses. A complete enumeration
of the value of X for each point in the sample space is

s HHH HHT HTH THH TTH THT HTT TTT

Xpsq 3 2 2 2 1 1 1 0

What is the range of X? What is the induced probability function PrX?
solution:
The range for the random variable X is X “ t0, 1, 2, 3u. Assuming all 8 points in S has
probability 1

8
. By simply counting, we see that the induced probability function on X is

x 0 1 2 3

PrXpX “ xq 1
8

3
8

3
8

1
8
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So far, we have seen finite S and finite X , and the definition of PrX is straightforward. If X
is uncountable, we define the induced probability function, PrX for anyset A Ă X ,

PrXpX P Aq “ Prpts P S : Xpsq P Auq.

This defines a legitimate probability function for which the Kolmogorov Axioms can be
verified.

Distribution Functions

Distribution Functions are used to describe the behavior of a r.v.

Cumulative distribution function

Definition The cumulative distribution function or cdf of a random variable X, denoted by
FXpxq, is defined by

FXpxq “ PrXpX ď xq, for all x.

Definition The survival function of a random variable X, is defined by

SXpxq “ 1 ´ FXpxq “ PrXpX ą xq.

Example Consider the experiment of tossing three fair coins, and let X “ number of heads
observed. The cdf of X is

FXpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if ´8 ă x ă 0
1
8

if 0 ď x ă 1
1
2

if 1 ď x ă 2
7
8

if 2 ď x ă 3

1 if 3 ď x ă 8

Some properties of the cdf:
Let F pxq be a cdf. Then

1. 0 ď F pxq ď 1

2. lim
xÑ´8

F pxq “ 0

3. lim
xÑ8

F pxq “ 1

4. F is nondecreasing: if a ă b, then F paq ď F pbq

5. F is right-continuous: lim
xÓb

F pxq “ F pbq, or lim
xÑb`

F pxq “ F pbq

6. Prpa ă X ď Bq “ F pbq ´ F paq
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Theorem The function F pxq is a cdf if and only if the following three conditions hold:

1. lim
xÑ´8

F pxq “ 0 and lim
xÑ8

F pxq “ 1

2. F is nondecreasing: if a ă b, then F paq ď F pbq

3. F is right-continuous: lim
xÓb

F pxq “ F pbq, or lim
xÑb`

F pxq “ F pbq

The cdf does not contain information about the original sample space.

Definition Two random variables X and Y are identically distributed if, for every Borel set
A Ă R, PrpX P Aq “ PrpY P Aq.

Example Toss a fair coin n times. The number of heads and the number of tails have the
same distribution.

Theorem The following two statements are equivalent:

1. The random variables X and Y are identically distributed.

2. FXpxq “ FY pxq for every x.

Types of Random Variables

Definition A random variable X can be

• discrete:

– X takes on a finite or countably infinite number of values

– FXpxq is step-wise constant

• continuous:

– the range of X consists of subsets of the real line

– FXpxq is continuous.

• mixed: FXpxq is piecewise continuous.

Example A random variable has cdf

F pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 x ă 0

x{2 0 ď x ă 1

2/3 1 ď x ă 2

11/12 2 ď x ă 3

1 3 ď x

Is this a valid cdf? Is it a discrete random variable or continuous random variable or mixed?
solution:
F pxq satisfies the three properties of a cdf that

23



1. lim
xÑ´8

F pxq “ 0 and lim
xÑ8

F pxq “ 1

2. F is nondecreasing: if a ă b, then F paq ď F pbq

3. F is right-continuous: lim
xÓb

F pxq “ F pbq, or lim
xÑb`

F pxq “ F pbq.

Therefore, F pxq is a valid cdf. The random variable X is a mixed type.
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Lecture 8: Sept 9

Last time

• Random variables

• Distribution Functions

• Types of Random Variables

Today

• Presentation: Andrey Markov by Ryan Mortonson

• Presentation: Spatial Statistics by Camille Kreisel

• Review part 1

Review part 1

We briefly review what we have covered so far. We complement this review process with
examples/questions taken from the book “Introduction to Probability Theory and Statistical
Inference” 3rd ed. by Harold J. Larson.

We started with Set Theory.

Definition The set, S, of all possible outcomes of a particular experiment is called the sample
space for the experiment.

Definition An event is any collection of possible outcomes of an experiment, that is , any
subset of S (including S itself).

An event occurs if any one of its elements is the outcome observed.

Definition Two events A and B are disjoint (or mutually exclusive) if A X B “ H. The
events A1, A2, . . . are pairwise disjoint (or mutually exclusive) if Ai X Aj “ H for all i ‰ j.

Definition If A1, A2, . . . are pairwise disjoint and Y8
i“1Ai “ A1 Y A2 Y ¨ ¨ ¨ “ S, then the

collection of A1, A2, . . . forms a partition of S.

Theorem For any three events, A, B, and C, defined on a sample space S,

1. Commutativity
A Y B “ B Y A,

A X B “ B X A;

25



2. Associativity
A Y pB Y Cq “ pA Y Bq Y C,

A X pB X Cq “ pA X Bq X C;

3. Distributive Laws
A X pB Y Cq “ pA X Bq Y pA X Cq,

A Y pB X Cq “ pA Y Bq X pA Y Cq;

4. DeMorgan’s Laws
pA Y Bq

c
“ Ac

X Bc,

pA X Bq
c

“ Ac
Y Bc;

Then we moved to define a probability function. To establish the domain for the probability
function, we start with sigma algebra.

Definition A collection of subsets of S is called a sigma algebra (or Borel field), denoted by
B, if it satisfies the following three properties:

1. H P B (the empty set is an element of B).

2. If A P B, then Ac P B (B is closed under complementation).

3. If A1, A2, ¨ ¨ ¨ P B, then Y8
i“1Ai P B (B is closed under countable unions).

By DeMorgan’s Law, (3) can be replaced by:

31. if A1, A2, ¨ ¨ ¨ P B, then X
8
i“1 Ai P B.

which means that if we have property (1), (2) and (3) then we have property (1), (2), (3’)
and vise-versa (if we have property (1), (2) and (3’) then we have property (1), (2), (3)).

This is because:

pY
8
i“1A

c
iq

c
“ X

8
i“1Ai.

So that if we have property (3) that A1, A2, ¨ ¨ ¨ P B and Y8
i“1Ai P B. Then by property

(2), we know that Ac
i P B for i “ 1, 2, . . . . And we can apply property (3) again such that

if Ac
1, A

c
2, ¨ ¨ ¨ P B, then pY8

i“1A
c
iq P B. Therefore, now we know pY8

i“1A
c
iq P B and we can

apply property (2) again to get its complement which is also in the Borel field. Therefore,
pY8

i“1A
c
iq

c
P B which is X8

i“1Ai.

For the other direction, we start from property (1), (2) and (3’). With property (3’), we
have if A1, A2, ¨ ¨ ¨ P B, then X8

i“1 Ai P B. We again, first apply property (2) such that
if A1, A2, ¨ ¨ ¨ P B, then Ac

1, A
c
2, ¨ ¨ ¨ P B. Now, by property (3’), we have X8

i“1A
c
i P B. By

applying property (2), we have pX8
i“1A

c
iq

c P B. By substituting Ai with A˚c
i and taking

complement at both side of equation pY8
i“1A

c
iq

c
“ X8

i“1Ai, we have pY8
i“1A

˚
i q “ pX8

i“1A
˚c
i qc.

Therefore, Y8
i“1Ai “ pX8

i“1A
c
iq

c P B which is property (3).
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Lecture 9: Sept 12

Last time

• Presentations

Today

• HW2 deadline extended (due: Sept 22nd)

• Random variables

• Distribution Functions

• Types of Random Variables

Distribution Functions

Distribution Functions are used to describe the behavior of a r.v.

Cumulative distribution function

Definition The cumulative distribution function or cdf of a random variable X, denoted by
FXpxq, is defined by

FXpxq “ PrXpX ď xq, for all x.

Definition The survival function of a random variable X, is defined by

SXpxq “ 1 ´ FXpxq “ PrXpX ą xq.

Example Consider the experiment of tossing three fair coins, and let X “ number of heads
observed. The cdf of X is

FXpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if ´8 ă x ă 0
1
8

if 0 ď x ă 1
1
2

if 1 ď x ă 2
7
8

if 2 ď x ă 3

1 if 3 ď x ă 8

Some properties of the cdf:
Let F pxq be a cdf. Then

1. 0 ď F pxq ď 1

2. lim
xÑ´8

F pxq “ 0

3. lim
xÑ8

F pxq “ 1
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4. F is nondecreasing: if a ă b, then F paq ď F pbq

5. F is right-continuous: lim
xÓb

F pxq “ F pbq, or lim
xÑb`

F pxq “ F pbq

6. Prpa ă X ď Bq “ F pbq ´ F paq

Theorem The function F pxq is a cdf if and only if the following three conditions hold:

1. lim
xÑ´8

F pxq “ 0 and lim
xÑ8

F pxq “ 1

2. F is nondecreasing: if a ă b, then F paq ď F pbq

3. F is right-continuous: lim
xÓb

F pxq “ F pbq, or lim
xÑb`

F pxq “ F pbq

The cdf does not contain information about the original sample space.

Definition Two random variables X and Y are identically distributed if, for every Borel set
A Ă R, PrpX P Aq “ PrpY P Aq.

Example Toss a fair coin n times. The number of heads and the number of tails have the
same distribution.

Theorem The following two statements are equivalent:

1. The random variables X and Y are identically distributed.

2. FXpxq “ FY pxq for every x.

Types of Random Variables

Definition A random variable X can be

• discrete:

– X takes on a finite or countably infinite number of values

– FXpxq is step-wise constant

• continuous:

– the range of X consists of subsets of the real line

– FXpxq is continuous.

• mixed: FXpxq is piecewise continuous.
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Example A random variable has cdf

F pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 x ă 0

x{2 0 ď x ă 1

2/3 1 ď x ă 2

11/12 2 ď x ă 3

1 3 ď x

Is this a valid cdf? Is it a discrete random variable or continuous random variable or mixed?
solution:
F pxq satisfies the three properties of a cdf that

1. lim
xÑ´8

F pxq “ 0 and lim
xÑ8

F pxq “ 1

2. F is nondecreasing: if a ă b, then F paq ď F pbq

3. F is right-continuous: lim
xÓb

F pxq “ F pbq, or lim
xÑb`

F pxq “ F pbq.

Therefore, F pxq is a valid cdf. The random variable X is a mixed type.

Discrete Random Variables

Suppose a random variable X takes only a finite or countable number of values. Let the
sample space of X be S “ tx1, x2, . . . u. Then the cdf can be expressed as:

F pxq “
ÿ

xiďx

PrpX “ xiq.

Definition The probability mass function (pmf) of a discrete random variable X is given by

fXpxq “ PrpX “ xq for all x.

If the sample space of X is X “ tx1, x2, . . . u, then

fpxiq “ PrpX “ xiq “ Prpxi´1 ă X ď xiq “ F pxiq ´ F pxi´1q.

Example (Geometric probabilities) Suppose we do an experiment that consists of tossing a
coin until a head appears. Let p “ probability of a head on any given toss, and define a
random variable X “ number of tosses required to get a head. Then for any x “ 1, 2, . . . ,

PrpX “ xq “ p1 ´ pq
x´1p,

since we must get x ´ 1 tails followed by a head for the event to occur and all trials are
independent. What is the pmf of the above Geometric distribution? What is the cdf?
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solution:
We have the pmf

fpxq “ PrpX “ xq “

#

p1 ´ pqx´1p for x “ 1, 2, . . .

0 otherwise.

For cdf, we have

F pxq “ PrpX ď xq “

txu
ÿ

i“1

fpiq

“

#

fp1q ` fp2q ` ¨ ¨ ¨ ` fptxuq for x ě 1

0 otherwise

“

#

1 ´ p1 ´ pqtxu for x ě 1

0 for x ă 1

where txu denote the floor function that returns the largest integer smaller or equal to x and
we used the summation of a geometric sequence.

Definition The domain of a random variableX is the set of all values of x for which fpxq ą 0.
This is also called range or sample space.

Properties of the pmf:

1. fpxq ą 0 for at most a countable number of values x. For all other values x, fpxq “ 0.

2. Let tx1, x2, . . . u denote the domain of X. Then

8
ÿ

i“1

fpxiq “ 1.

An obvious consequence is that fpxq ď 1 over the domain.

Example What is the pmf of a deterministic random variable (a constant)?
solution:

fpxq “ PrpX “ xq “

#

1 for x “ c

0 otherwise.

This is equivalent as a constant of value c.

Example In many applications, a formula can be used to represent the pmf of a random
variable. Suppose X can take values 1, 2, . . . with pmf

fpxq “

#

1
xpx`1q

for x “ 1, 2, . . .

0 otherwise.
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How would we determine if this is an allowable pmf?
solution:
We show that fpxq satisfies the properties of pmf.

1. fpxq ą 0 for a countable number of values x. For all other values x, fpxq “ 0.

2. Let tx1, x2, . . . u denote the domain of X. Then

8
ÿ

i“1

fpxiq “

8
ÿ

i“1

fpiq “

8
ÿ

i“1

ˆ

1

x
´

1

x ` 1

˙

“ 1.
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Lecture 10: Sept 14

Last time

• Random variables

• Distribution Functions

• Types of Random Variables

Today

• Continuous Random Variables

• Counting Techniques

Continuous Random Variables

Definition A random variable X is continuous if FXpxq is a continuous function of x.

Definition A random variableX is absolutely continuous if FXpxq is an absolutely continuous
function of x.

Definition A function F pxq is absolutely continuous if it can be written

F pxq “

ż x

´8

fpxqdx.

Absolute continuity is stronger than continuity but weaker than differentiability. An example
of an absolutely continuous function is one that is:

• continuous everywhere

• differentiable everywhere, except possibly for a countable number of points.

Definition The probability density function or pdf, fXpxq, of a continuous random variable
X is the function that satisfies

FXpxq “

ż x

´8

fXptqdt for all x.

Notation: We write X „ FXpxq for the expression “X has a distribution given by FXpxq”
where we read the symbol “„” as “is distributed as”. Similarly, we can write X „ fXpxq or
, if X and Y have the same distribution, X „ Y .

Theorem A function fXpxq is a pdf (or pmf) of a random variable X if and only if

1. fXpxq ě 0 for all x.

2.
ş8

´8
fXpxqdx “ 1 (pdf) or

ř

x fXpxq “ 1 (pmf).
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Example Suppose F pxq “ 1´ e´λx for x ą 0 and F pxq “ 0 otherwise. Is F pxq a cdf? What
is the associated pdf?
solution:
F pxq satisfies the three properties of cdf

1. lim
xÑ´8

F pxq “ 0 and lim
xÑ8

F pxq “ 1

2. F is nondecreasing: if a ă b, then F paq ď F pbq

3. F is right-continuous: lim
xÓb

F pxq “ F pbq, or lim
xÑb`

F pxq “ F pbq.

F pxq is a cdf. Actually, F pxq is the cdf of exponential distribution.

To get the pdf, we only need to differentiate the cdf.

fpxq “
dF pxq

dx
“

#

λe´λx for x ą 0

0 otherwise.

Notes

• If X is a continuous random variable, then fpxq is not the probability that X “ x.
In fact, if X is an absolutely continuous random variable with density function fpxq,
then PrpX “ xq “ 0. (Why?)
proof

PrpX “ xq “ lim
hÑ0

ż x`h

x´h

fpuqdu

“ lim
hÑ0

F px ` hq ´ F px ´ hq

“ F px`q ´ F px´q

“ 0

• Because PrpX “ aq “ 0, all the following are equivalent:

Prpa ď X ď bq, Prpa ď X ă bq , Prpa ă X ď bq and Prpa ă X ă bq

• fpxq can exceed one!

Counting Techniques

These sections are from 2.4 of “Introduction to Probability Theory and Statistical Inference”
by Harold J. Larson. We employ them to discuss combinatorics.

When the equally likely assumption is made for a finite sample space, the probability of
occurrence of any event A is given by the ratio of the number of elements belonging to A to
the number of elements belonging to S. For such cases it is useful to be able to count the
number of elements belonging to given sets.

A very simple technique that is frequently useful in counting problems is called the multipli-
cation principle.
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Definition If a first operation can be performed in any of n1 ways and a second operation
can then be performed in any of n2 ways, both operations can be performed (the second
immediately following the first) in n1 ¨ n2 ways.

Example If we can travel from town A to town B in 3 ways and from town B to town C in
4 ways, then we can travel from A to C via B in a total of 3 ¨ 4 “ 12 ways.

Example If the operation of tossing a die gives rise to 1 of 6 possible outcomes and the
operation of tossing a second die gives rise to 1 of 6 possible outcomes, then the operation
of tossing a pair of dice gives rise to 6 ¨ 6 “ 36 possible outcomes.

Definition An arrangement of n symbols in a definite order is called a permutation of n
symbols.

Example Let’s consider all possible n-tuples made by n different symbols. In listing all the
possible n-tuples, we would perform n natural operations. First we must fill the leftmost
position of n-tuples, we have all n symbols to choose from. Then we must fill the second
leftmost position, where we have n´1 symbols to choose from. Then, the third position with
n ´ 2 symbols to choose from, and so on. Finally, when we reach the right most position,
we have 1 symbol left.

Using the multiplication rule, the total number of ways we can perform all n operations will
be

n! “ npn ´ 1qpn ´ 2q ¨ ¨ ¨ 2 ¨ 1,

where we write n! (read n-factorial) and we define 0! “ 1.

Example Suppose the same 5 people park their cars on the same side of the street in the
same block every night. How many different ordering of the 5 cars parked on the street are
possible?
Solution:

5! “ 5 ¨ 4 ¨ 3 ¨ 2 ¨ 1 “ 120

Example Suppose the same 5 people park their cars on the two sides of the street in the
same block every night where one side has 3 slots and the other side has 2. How many
different ordering of 3 cars out of 5 can be parked on the 3-slot side?
Solution:
For the first slot, we have 5 possible cars to choose from. For the second slot, we have 4 cars
to choose from (one is taken for the first slot). For the third slot, we have 3 cars to choose
from (two cars are taken for the other two slots). In total, there are

5 ¨ 4 ¨ 3 “ 60

ways.
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Definition The number of r-tuples we can make r ď n, using n different symbols (each only
once), is called the number of permutations of n things r at a time and is denoted by nP r

which is calculated as
nP r “ npn ´ 1q ¨ ¨ ¨ pn ´ r ` 1q.

Example Fifteen cars enter a race. In how many different ways could trophies for first,
second, and third place be awarded?
Solutions:

15P 3 “ 15 ¨ 14 ¨ 13 “ 2730.

Example How many of the 3-tuples just counted have car number 15 in the first position?
Solutions:

14P 2 “ 14 ¨ 13 “ 182.

Definition The number of distinct subsets, each of size r, that can be constructed from a set
with n elements is called the number of combinations of n things r at a time: this number
is represented by

`

n
r

˘

which reads n choose r.

ˆ

n

r

˙

“
n!

r!pn ´ rq!
.

Example How many distinct 5-card hands can be dealt from a standard 52-card deck?

ˆ

52

5

˙

“
52!

5!47!
“ 2, 598, 960.

Theorem If x and y are any two real numbers and n is a positive integer, then

px ` yq
n

“

n
ÿ

i“1

ˆ

n

i

˙

xiyn´i, where

ˆ

n

i

˙

“
n!

pn ´ iq!i!
.
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Lecture 11: Sept 16

Last time

• Continuous Random Variables

Today

• Presentations

• Review part 2

Review part 2

Definition Given a sample space S and an associated sigma algebra B, a probability function
is a function Pr with domain B that satisfies

1. PrpAq ě 0 for all A P B.

2. PrpSq “ 1.

3. If A1, A2, ¨ ¨ ¨ P B are pairwise disjoint, then PrpY8
i“1Aiq “

ř8

i“1 PrpAiq.

The above three properties are usually referred to as the Axioms of Probability (or the
Kolmogorov Axioms, after A. Kolmogorov, one of the fathers of probability theory). Any
function that satisfies the Axioms of Probability is called a probability function.

Theorem If Pr is a probability function and A is any set in B, then

1. PrpHq “ 0, where H is the empty set;

2. PrpAq ď 1;

3. PrpAcq “ 1 ´ PrpAq.

Theorem If Pr is a probability function and A and B are any sets in B, then

1. PrpB X Acq “ PrpBq ´ PrpA X Bq;

2. PrpA Y Bq “ PrpAq ` PrpBq ´ PrpA X Bq;

3. If A Ă B, then PrpAq ď PrpBq.

Theorem If Pr is a probability function, then

1. PrpAq “
ř8

i“1 PrpA X Ciq for any partition C1, C2, . . . ;

2. PrpY8
i“1Aiq ď

ř8

i“1 PrpAiq for any sets A1, A2, . . . .

where (1) is also referred to as “Total probability” and (2) is Boole’s inequality.
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Definition If A and B are events in S, and PrpBq ą 0, then the conditional probability of A
given B, written PrpA|Bq, is

PrpA|Bq “
PrpA X Bq

PrpBq
.

Note that B becomes the sample space now: PrpB|Bq “ 1.

Theorem (Bayes’ Rule) Let A1, A2, . . . be a partition of the sample space, and let B be any
set. Then, for each i “ 1, 2, . . . ,

PrpAi|Bq “
PrpB|AiqPrpAiq

ř8

j“1 PrpB|AjqPrpAjq
.
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Lecture 12: Sept 19

Last time

• Random variables

• Distribution Functions

• Types of Random Variables

Today

• Counting Techniques

• Transformations of Random Variables

Definition The number of r-tuples we can make r ď n, using n different symbols (each only
once), is called the number of permutations of n things r at a time and is denoted by nP r

which is calculated as
nP r “ npn ´ 1q ¨ ¨ ¨ pn ´ r ` 1q.

Example Fifteen cars enter a race. In how many different ways could trophies for first,
second, and third place be awarded?
Solutions:

15P 3 “ 15 ¨ 14 ¨ 13 “ 2730.

Example How many of the 3-tuples just counted have car number 15 in the first position?
Solutions:

14P 2 “ 14 ¨ 13 “ 182.

Definition The number of distinct subsets, each of size r, that can be constructed from a set
with n elements is called the number of combinations of n things r at a time: this number
is represented by

`

n
r

˘

which reads n choose r.
ˆ

n

r

˙

“
n!

r!pn ´ rq!
.

Example How many distinct 5-card hands can be dealt from a standard 52-card deck?
ˆ

52

5

˙

“
52!

5!47!
“ 2, 598, 960.

Theorem If x and y are any two real numbers and n is a positive integer, then

px ` yq
n

“

n
ÿ

i“0

ˆ

n

i

˙

xiyn´i, where

ˆ

n

i

˙

“
n!

pn ´ iq!i!
.

38



Transformations of Random Variables

Theorem If X is a r.v. with sample space X Ă R and cdf FXpxq, then any function of X,
say Y “ gpXq is also a random variable. The new random variable Y has a new sample
space Y “ gpXq Ă R. The objective is to find the cdf FY pyq of Y .

Probability mapping: For any set A Ă Y :

PrpY P Aq “ PrpgpXq P Aq

“ Prptx P X : gpxq P Auq

“ PrpX P g´1
pAqq,

where we have defined
g´1

pAq “ tx P X : gpxq P Au.

Notice that g´1pAq is well defined even if gp¨q is not necessarily bijective.

Example (Binomial transformation) A discrete random variable X has a binomial distribu-
tion if its pmf is of the form

fXpxq “ PrpX “ xq “

ˆ

n

x

˙

pxp1 ´ pq
n´x, x “ 0, 1, . . . , n,

where n is a positive integer and 0 ď p ď 1. Values such as n and p that can be set to differ-
ent values, producing different probability distributions, are called parameters. Consider a
random variable Y “ gpXq, where gpxq “ n´ x; that is, Y “ n´X. Here X “ t0, 1, . . . , nu

and Y “ ty : y “ gpxq, x P X u “ t0, 1, . . . , nu. For any y P Y , n ´ x “ gpxq “ y if and only
if x “ n ´ y. Therefore, g´1pyq “ n ´ y and

fY pyq “
ÿ

xPg´1pyq

fXpxq

“ fXpn ´ yq

“

ˆ

n

n ´ y

˙

pn´y
p1 ´ pq

n´pn´yq

“

ˆ

n

y

˙

p1 ´ pq
ypn´y.

Therefore, Y also has a binomial distribution, but with parameters n and 1 ´ p.

Example (exercise 2.3) Suppose X has the geometric pmf fXpxq “ 1
3
p2
3
qx, x “ 0, 1, 2, . . . .

Determine the probability distribution of Y “ X{pX ` 1q. Note that here both X and Y
are discrete random variables. To specify the probability distribution of Y , specify its pmf.
Solution:

PrpY “ yq “ Prp
X

X ` 1
“ yq “ PrpX “

y

1 ´ y
q “

1

3
p
2

3
q
y{p1´yq, y “ 0,

1

2
,
2

3
, . . . ,

x

x ` 1
, . . .
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Lecture 13: Sept 21

Last time

• Counting Techniques

• Transformations of Random Variables

Today

• Transformations of continuous random variables

Theorem Suppose a continuous random variable X has cdf FXpxq, let Y “ gpXq, and let
X and Y be defined as

X “ tx : fpxq ą 0u and Y “ ty : y “ gpxq for some x P X u.

Then,

1. If g is an increasing function on X , FY pyq “ FXpg´1pyqq for y P Y .

2. If g is a decreasing function on X , FY pyq “ 1 ´ FXpg´1pyqq for y P Y .

Proof: We start with
FY pyq “ PrpY ď yq

“ PrpgpXq ď yq

1. If g is an increasing function, then gpXq ď y if and only if X ď g´1pyq. Therefore,
FY pyq “ PrpgpXq ď yq “ PrpX ď g´1pyqq “ FXpg´1pyqq.

2. Similarly, if g is a decreasing function, then gpXq ď y if and only if X ě g´1pyq. And
FY pyq “ PrpgpXq ď yq “ PrpX ě g´1pyqq “ 1 ´ FXpg´1pyqq.

Theorem Let X have pdf fXpxq and let Y “ gpXq, where g is a monotone function. Let X
and Y be defined as

X “ tx : fpxq ą 0u and Y “ ty : y “ gpxq for some x P X u.

Suppose that fXpxq is continuous on X and that g´1pyq has a continuous derivative on Y .
Then the pdf of Y is given by

fY pyq “

#

fXpg´1pyqq| d
dy
g´1pyq| y P Y

0 otherwise.

Proof:
From last theorem, we have the cdf forms FY pyq. Then fY pyq “ d

dy
FY pyq. (finish the proof)

From last theorem, we have

FY pyq “

#

FXpg´1pyqq if g is increasing

1 ´ FXpg´1pyqq if g is decreasing.
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We have, by the chain rule,

fY pyq “
d

dy
FY pyq “

#

fXpg´1pyqq d
dy
g´1pyq if g is increasing

´fXpg´1pyqq d
dy
g´1pyq if g is decreasing,

where d
dy
g´1pyq ă 0 when g is decreasing such that ´ d

dy
g´1pyq “ | d

dy
g´1pyq|.

Example (Square transformation) Suppose X is a continuous random variable. For y ą 0,
the cdf of Y “ X2 is

FY pyq “ PrpY ď yq “ PrpX2
ď yq “ Prp´

?
y ď X ď

?
yq.

Because x is continuous, we can drop the equality from the left endpoint and obtain

FY pyq “ Prp´
?
y ă X ď

?
yq

“ PrpX ď
?
yq ´ PrpX ď ´

?
yq “ FXp

?
yq ´ FXp´

?
yq.

The pdf of Y can now be obtained from the cdf by differentiation:

fY pyq “
d

dy
FY pyq

“
d

dy
rFXp

?
yq ´ FXp´

?
yqs

“
1

2
?
y
fXp

?
yq `

1

2
?
y
fXp´

?
yq,

where we use the chain rule to differentiate FXp
?
yq and FXp´

?
yq.

Example (Linear transformation) Suppose X is a continuous random variable with pdf
fXpxq. Let

Y “ a ` bX,
dy

dx
“ b.

Then

fY pyq “ fX
“

g´1
pyq

‰

|
dx

dy
| “ fXp

y ´ a

b
q
1

|b|
.

This transformation is often used when X has mean 0 and standard deviation 1. The linear
transformation above creates a random variable Y with a distribution that has the same
shape as that of X but has mean a and variance b2.

Conversely, if Y has mean a and standard deviation b, then X “ pY ´ aq{b has mean 0 and
standard deviation 1. This is called sometimes the “Studentized” transformation.
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Example (Normal distribution) Let X „ Np0, 1q:

fXpxq “
1

?
2π

e´x2

2 , ´8 ă x ă 8.

The transformation

Y “ µ ` σX, X “
Y ´ µ

σ

yields

fY pyq “ fXp
y ´ µ

σ
q
1

σ
“

1
?
2πσ

e´
py´µq2

2σ2 .

More generally, a distribution is a member of the class of location-scale distributions if the
distribution of a linear transformation of a random variable with that distribution has the
same distribution, but with different parameters.

Example (Square root of an exponential RV) Suppose X „ exppλq, so that

fXpxq “

#

λe´λx x ě 0

0 otherwise

and consider the distribution of Y “
?
X. The transformation

y “ gpxq “
?
x, x ě 0

is one-to-one and has an inverse x “ y2 with dx{dy “ 2y. Thus

fY pyq “ fXpy2q2y “ 2λye´λy2 , y ě 0.

This distribution is a particular form of the Rayleigh distribution and is a special case of the
Weibull distribution.
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Lecture 14: Sept 23

Last time

• Transformations of continuous random variables

Today

• Practice examples

Example A random variable X has a discrete uniform p1, Nq distribution, X „ Unift1, Nu,
if

PrpX “ x|Nq “
1

N
, x “ 1, 2, . . . , N,

where N is a specified integer. This distribution puts equal mass on each of the outcomes
1, 2, . . . , N . Question: what is the cdf of this r.v.?
Solutions:

F pxq “ PrpX ď x|Nq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

0, x ă 1
1
N
, 1 ď x ă 2

2
N
, 2 ď x ă 3

3
N
, 3 ď x ă 4
...

N´1
N

, N ´ 1 ď x ă N

1, N ď x

Example The continuous uniform distribution is defined by spreading mass uniformly over
an interval ra, bs. A random variable X has a continuous uniform ra, bs distribution, X „

Unifpa, bq, if its pdf is given by

fpx|a, bq “

#

1
b´a

if x P ra, bs

0 otherwise.

Question: what is the cdf?
Solutions:

F pxq “ PrpX ď xq “

$

’

&

’

%

0, x ă a
x´a
b´a

, a ď x ă b

1, b ď x.

43



Lecture 15: Sept 26

Last time

• Presentation

Today

• HW3 posted

• Midterm Exam 1 10/10, will have a practice exam

• Probability integral transformation

• Expectations (2.2)

Theorem (Probability integral transformation) Let X have continuous cdf FXpxq and define
the random variable Y as Y “ FXpXq. Then Y is uniformly distributed on p0, 1q, that is,
PrpY ď yq “ y, 0 ă y ă 1.

Before we prove this theorem, we will digress for a moment and look at F´1
X , the inverse of

the cdf FX , in some detail. If FX is strictly increasing, then F´1
X is well defined by

F´1
X pyq “ x ðñ FXpxq “ y.

However, if FX is constant on some interval, then F´1
X is not well defined as Figure 13.1

illustrates. Any x1 ď x ď x2 satisfies FXpxq “ y

Figure 13.1: Figure 2.1.2. (a) FXpxq strictly increasing; (b) FXpxq nondecreasing

This problem is avoided by defining F´1
X for 0 ă y ă 1 by

F´1
X pyq “ inftx : FXpxq ě yu.
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With this definition, for Figure 13.1(b), we have F´1
X pyq “ x1.

Proof:
For Y “ FXpXq, we have, for 0 ă y ă 1,

PrpY ď yq “ PrpFXpXq ď yq

“ PrpF´1
X rFXpXqs ď F´1

X pyqq pF´1
X is increasingq

“ PrpX ď F´1
X pyqq

“ FXpF´1
X pyqq pdefinition of FXq

“ y.

One application of the probability integral transformation is in the generation of random
samples from a particular distribution. If it is required to generate an observation X from
a population with cdf FX , we need only generate a uniform random number U , between 0
and 1, and solve for x in the equation FXpxq “ u.

Expected Values

Definition The expected value or mean of a random variable gpXq, denoted by EgpXq, is

EgpXq “

$

’

&

’

%

8
ş

´8

gpxqfpxqdx if X is continuous

ř

xPX
gpxqPrpX “ xq if X is discrete

Provided the integral or summation exists.

If we let gpXq “ X, then we get

EX “

$

’

&

’

%

8
ş

´8

xfpxqdx if X is continuous

ř

xPX
xPrpX “ xq if X is discrete

Example (Exponential mean) Suppose X has an exponential (λ) distribution, X „ Exppλq,
that is, it has pdf given by

fXpxq “
1

λ
e´x{λ, 0 ď x ă 8, λ ą 0.

Find out EX.
Solution:
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EX “

8
ż

0

1

λ
xe´x{λdx

“ ´xe´x{λ

∣∣∣∣8
0

`

8
ż

0

e´x{λdx

“

8
ż

0

e´x{λdx

“ λ

Example (Binomial mean) if X has a binomial distribution, X „ Binomialpn, pq, its pmf is
given by

PrpX “ xq “

ˆ

n

x

˙

pxp1 ´ pq
n´x, x “ 0, 1, . . . , n,

where n is a positive integer, 0 ď p ď 1, and for every fixed pair n and p the pmf sums to 1.
Find out EX.
Solution:

EX “

n
ÿ

x“0

x

ˆ

n

x

˙

pxp1 ´ pq
n´x,“

n
ÿ

x“1

x

ˆ

n

x

˙

pxp1 ´ pq
n´x.

Using the identity x
`

n
x

˘

“ n
`

n´1
x´1

˘

, we have

EX “

n
ÿ

x“1

n

ˆ

n ´ 1

x ´ 1

˙

pxp1 ´ pq
n´x

“

n´1
ÿ

y“0

n

ˆ

n ´ 1

y

˙

py`1
p1 ´ pq

n´py`1q

“ np
n´1
ÿ

y“0

ˆ

n ´ 1

y

˙

pyp1 ´ pq
n´1´y

“ np,

since the last summation must be 1, being the sum over all possible values of a binomial(n´

1, p) pmf.
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Lecture 16: Sept 28

Last time

• HW3 posted

• Midterm Exam 1 10/10, will have a practice exam

• Probability integral transformation

• Expectations (2.2)

Today

• Exam 1 covers up to next Monday’s lecture

• Expectations (2.2)

• Moments and moment generating function

Expectation

The process of taking expectations is a linear operation, which means that the expectation
of a linear function of X can be easily evaluated by noting that for any constants a and b,
such that

EpaX ` bq “ aEX ` b

Theorem Let X be a random variable and let a, b, and c be constants. Then for any
functions g1pxq and g2pxq whose expectations exist,

1. Epag1pXq ` bg2pXq ` cq “ aEg1pXq ` bEg2pXq ` c.

2. If g1pxq ě 0 for all x, then Eg1pXq ě 0.

3. If g1pxq ě g2pxq for all x, then Eg1pXq ě Eg2pXq.

4. If a ď g1pxq ď b for all x, then a ď Eg1pXq ď b.

Proof:
We will give details for only the continuous case, the discrete case being similar. By definition

Epag1pXq ` bg2pXq ` cq “

8
ż

´8

rag1pxq ` bg2pxq ` cs fXpxqdx

“

8
ż

´8

ag1pxqfXpxqdx `

8
ż

´8

bg2pxqfXpxqdx `

8
ż

´8

cfXpxqdx

“ aEg1pXq ` bEg2pXq ` c

The other three properties are proved in a similar manner (shown in class).
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Example (Method of indicators) An example of how the above properties are useful. Let
X „ Binomialpn, pq for n positive integer and 0 ď p ď 1 (n is the number of independent
identical binary trials and p is the probability of success). We can write

X “

n
ÿ

i“1

Ii

where Ii is the indicator that ith trial is a success (i.e. Ii
i.i.d.
„ Bernoullippq). We have

EIi “ 1 ¨ p ` 0 ¨ p1 ´ pq “ p.

Therefore,

EX “

n
ÿ

i“1

EIi “

n
ÿ

i“1

p “ np.

Theorem For a non-negative random variable X (i.e. fpxq “ 0 for x ă 0).

EX “

#

ş8

0
p1 ´ F pxqqdx, X continuous

ř8

x“0p1 ´ F pxqq, X discrete

Proof:
We prove the continuous case first,

8
ż

0

r1 ´ F pxqs dx “

8
ż

0

r1 ´ PrpX ď xqs dx

“

8
ż

0

PrpX ą xqdx

“

8
ż

0

8
ż

y“x

fXpyqdydx

“

8
ż

0

y
ż

x“0

fXpyqdxdy

“

8
ż

0

yfXpyqdy

“ EX.
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Then, for discrete case, we have

8
ÿ

x“0

p1 ´ F pxqq “

8
ÿ

x“0

PrpX ą xq

“

8
ÿ

x“0

8
ÿ

y“x`1

PrpX “ yq

“

8
ÿ

y“1

y´1
ÿ

x“0

PrpX “ yq

“

8
ÿ

y“1

y PrpX “ yq

“ EX

Moments

Example (Minimizing distance) The expected value of a random variable has another prop-
erty, one that we can think of as relating to the interpretation of EX as a good guess at a
value of X.

Suppose we measure the distance between a random variable X and a constant b by pX´bq2.
The closer b is to X, the smaller this quantity is. We can now determine the value of b that
minimizes E rpX ´ bq2s and, hence, will provide us with a good predictor of X. (Note that
it does no good to look for a value of b that minimizes pX ´ bq2, since the answer would
depend on X, making it a useless predictor of X.)

We could proceed with the minimization of EpX ´ bq2 by using calculus, but there is a
simpler method:

EpX ´ bq2 “ EpX ´ EX ` EX ´ bq2

“ E rpX ´ EXq ` pEX ´ bqs
2

“ EpX ´ EXq
2

` pEX ´ bq2 ` 2E rpX ´ EXqpEX ´ bqs ,

where we have expanded the square. Note that E rpX ´ EXqpEX ´ bqs “ pEX ´ bqEpX ´

EXq “ 0, since EX ´ b is constant and comes out of the expectation, EpX ´ EXq “

EX ´ EX “ 0. This means

EpX ´ bq2 “ EpX ´ EXq
2

` pEX ´ bq2.

Such that EpX ´ bq2 is minimized at b “ EX. And EpX ´EXq2 is actually the variance of
X (V arX “ EpX ´ EXq2).

The various moments of a distribution are an important class of expectations.

Definition For each integer n, the nth moment of X (or FXpxq), µ1
n, is

µ1
n “ EXn.
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The nth central moment of X, µn, is

µn “ EpX ´ µq
n,

where µ “ µ1
1 “ EX.

Notes:

• µ1
0 “ EX0 “ 1

• µ1
1 is the mean, usually denoted by µ.

• µ0 “ EpX ´ µq0 “ 1

• µ1 “ 0

• µ2 “ EpX ´ EXq2 is the variance

• µ3 “ EpX ´ EXq3 is related to the skewness.

• µ4 “ EpX ´ EXq4 is related to the kurtosis.

Definition The variance of a random variable X is its second central moment, Var pXq “

E rpX ´ EXq2s. The positive square root of Var pXq is the standard deviation of X.

The variance gives a measure of the degree of spread of a distribution around its mean.
Figure 29.5 shows a plot of two samples, one sample draws 100 numbers from a normal
distribution with mean 0 and variance 1, Np0, 1q. The other sample draws 100 numbers
from a normal distribution with mean 0 and variance 100, Np0, 100q.

Figure 16.2: Figure 2.1.2. Two samples of 100 numbers drawn from Np0, 1q and Np0, 100q.

Example (Exponential variance) Let X have the exponential(λ) distribution. We can cal-
culate the variance of X now.
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Solution:

Var pXq “ EpX ´ λq
2

“

ż 8

0

px ´ λq
2 1

λ
e´x{λdx

Var pXq “

ż 8

0

px2
´ 2xλ ` λ2

q
1

λ
e´x{λdx

“

ż 8

0

x2 1

λ
e´x{λdx ´ 2

ż 8

0

xλ
1

λ
e´x{λdx ` λ2

“ EX2
´ λ2

“ λ2

Theorem If X is a random variable with finite variance, then for any constants a and b,

Var paX ` bq “ a2Var pXq .

Proof:
From the definition, we have

Var paX ` bq “ E rpaX ` bq ´ EpaX ` bqs
2

“ EpaX ´ aEXq
2

“ a2EpX ´ EXq
2

“ a2Var pXq .

It is sometimes to use an alternative formula for the variance, given by

Var pXq “ EpX2
q ´ pEXq

2,

which is easily established by

Var pXq “ EpX ´ EXq
2

“ E
“

X2
´ 2XEX ` pEXq

2
‰

“ EX2
´ 2pEXq

2
` pEXq

2

“ EX2
´ pEXq

2.

Example (Binomial variance) Let X „ Binomialpn, pq, that is ,

PrpX “ xq “

ˆ

n

x

˙

pxp1 ´ pq
n´x.

What is the variance of X?
Solutions:
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Method #1:
We want to find EX2 first. We use the

EX2
“

n
ÿ

x“0

x2

ˆ

n

x

˙

pxp1 ´ pq
n´x.

we use the same property x2
`

n
x

˘

“ xn
`

n´1
x´1

˘

. We then have

EX2
“ n

n
ÿ

x“1

x

ˆ

n ´ 1

x ´ 1

˙

pxp1 ´ pq
n´x

“ n
n´1
ÿ

y“0

py ` 1q

ˆ

n ´ 1

y

˙

py`1
p1 ´ pq

n´1´y

“ np
n´1
ÿ

y“0

y

ˆ

n ´ 1

y

˙

pyp1 ´ pq
n´1´y

` np
n´1
ÿ

y“0

ˆ

n ´ 1

y

˙

pyp1 ´ pq
n´1´y

“ np ¨ pn ´ 1qp ` np

“ npn ´ 1qp2 ` np.

And now
Var pXq “ EX2

´ pEXq
2

“ npn ´ 1qp2 ` np ´ pnpq
2

“ np ´ np2

“ npp1 ´ pq.

Method #2:

Recall that we could write X “
řn

i“1 Ii, where Ii
i.i.d.
„ Bernoullippq. Then

Var pXq “ Var

˜

n
ÿ

i“1

Ii

¸

“

n
ÿ

i“0

Var pIiq (Ii’s are independent)

“ nVar pIiq (Ii’s are identically distributed)

“ n
“

EpI2i q ´ pEIiq
2
‰

“ n
“

p ´ p2
‰

“ npp1 ´ pq.
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Lecture 17: Sept 30

Last time

• Exam 1 covers up to next Monday’s lecture

• Expectations (2.2)

• Moments and moment generation function

Today

• Practice examples

Example A random variable X has a discrete uniform p1, Nq distribution, X „ Unift1, Nu,
if

PrpX “ x|Nq “
1

N
, x “ 1, 2, . . . , N,

where N is a specified integer. This distribution puts equal mass on each of the outcomes
1, 2, . . . , N . Question: what is the cdf of this r.v.?
Solutions:

F pxq “ PrpX ď x|Nq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

0, x ă 1
1
N
, 1 ď x ă 2

2
N
, 2 ď x ă 3

3
N
, 3 ď x ă 4
...

N´1
N

, N ´ 1 ď x ă N

1, N ď x

Example The continuous uniform distribution is defined by spreading mass uniformly over
an interval ra, bs. A random variable X has a continuous uniform ra, bs distribution, X „

Unifpa, bq, if its pdf is given by

fpx|a, bq “

#

1
b´a

if x P ra, bs

0 otherwise.

Question: what is the cdf?
Solutions:

F pxq “ PrpX ď xq “

$

’

&

’

%

0, x ă a
x´a
b´a

, a ď x ă b

1, b ď x.
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Lecture 18: Oct 3

Last time

• Practice examples

Today

• Midterm 1 practice exam posted on canvas

• Moments and moment generating function

Moments

Example (Minimizing distance) The expected value of a random variable has another prop-
erty, one that we can think of as relating to the interpretation of EX as a good guess at a
value of X.

Suppose we measure the distance between a random variable X and a constant b by pX´bq2.
The closer b is to X, the smaller this quantity is. We can now determine the value of b that
minimizes E rpX ´ bq2s and, hence, will provide us with a good predictor of X. (Note that
it does no good to look for a value of b that minimizes pX ´ bq2, since the answer would
depend on X, making it a useless predictor of X.)

We could proceed with the minimization of EpX ´ bq2 by using calculus, but there is a
simpler method:

EpX ´ bq2 “ EpX ´ EX ` EX ´ bq2

“ E rpX ´ EXq ` pEX ´ bqs
2

“ EpX ´ EXq
2

` pEX ´ bq2 ` 2E rpX ´ EXqpEX ´ bqs ,

where we have expanded the square. Note that E rpX ´ EXqpEX ´ bqs “ pEX ´ bqEpX ´

EXq “ 0, since EX ´ b is constant and comes out of the expectation, EpX ´ EXq “

EX ´ EX “ 0. This means

EpX ´ bq2 “ EpX ´ EXq
2

` pEX ´ bq2.

Such that EpX ´ bq2 is minimized at b “ EX. And EpX ´EXq2 is actually the variance of
X (V arX “ EpX ´ EXq2).

The various moments of a distribution are an important class of expectations.

Definition For each integer n, the nth moment of X (or FXpxq), µ1
n, is

µ1
n “ EXn.

The nth central moment of X, µn, is

µn “ EpX ´ µq
n,
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where µ “ µ1
1 “ EX.

Notes:

• µ1
0 “ EX0 “ 1

• µ1
1 is the mean, usually denoted by µ.

• µ0 “ EpX ´ µq0 “ 1

• µ1 “ 0

• µ2 “ EpX ´ EXq2 is the variance

• µ3 “ EpX ´ EXq3 is related to the skewness.

• µ4 “ EpX ´ EXq4 is related to the kurtosis.

Definition The variance of a random variable X is its second central moment, Var pXq “

E rpX ´ EXq2s. The positive square root of Var pXq is the standard deviation of X.

The variance gives a measure of the degree of spread of a distribution around its mean.
Figure 29.5 shows a plot of two samples, one sample draws 100 numbers from a normal
distribution with mean 0 and variance 1, Np0, 1q. The other sample draws 100 numbers
from a normal distribution with mean 0 and variance 100, Np0, 100q.

Figure 18.3: Figure 2.1.2. Two samples of 100 numbers drawn from Np0, 1q and Np0, 100q.

Example (Exponential variance) Let X have the exponential(λ) distribution. We can cal-
culate the variance of X now.
Solution:
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Var pXq “ EpX ´ λq
2

“

ż 8

0

px ´ λq
2 1

λ
e´x{λdx

Var pXq “

ż 8

0

px2
´ 2xλ ` λ2

q
1

λ
e´x{λdx

“

ż 8

0

x2 1

λ
e´x{λdx ´ 2

ż 8

0

xλ
1

λ
e´x{λdx ` λ2

“ EX2
´ λ2

“ λ2

Theorem If X is a random variable with finite variance, then for any constants a and b,

Var paX ` bq “ a2Var pXq .

Proof:
From the definition, we have

Var paX ` bq “ E rpaX ` bq ´ EpaX ` bqs
2

“ EpaX ´ aEXq
2

“ a2EpX ´ EXq
2

“ a2Var pXq .

It is sometimes to use an alternative formula for the variance, given by

Var pXq “ EpX2
q ´ pEXq

2,

which is easily established by

Var pXq “ EpX ´ EXq
2

“ E
“

X2
´ 2XEX ` pEXq

2
‰

“ EX2
´ 2pEXq

2
` pEXq

2

“ EX2
´ pEXq

2.

Example (Binomial variance) Let X „ Binomialpn, pq, that is ,

PrpX “ xq “

ˆ

n

x

˙

pxp1 ´ pq
n´x.

What is the variance of X?
Solutions:
Method #1:
We want to find EX2 first. We use the

EX2
“

n
ÿ

x“0

x2

ˆ

n

x

˙

pxp1 ´ pq
n´x.

56



we use the same property x2
`

n
x

˘

“ xn
`

n´1
x´1

˘

. We then have

EX2
“ n

n
ÿ

x“1

x

ˆ

n ´ 1

x ´ 1

˙

pxp1 ´ pq
n´x

“ n
n´1
ÿ

y“0

py ` 1q

ˆ

n ´ 1

y

˙

py`1
p1 ´ pq

n´1´y

“ np
n´1
ÿ

y“0

y

ˆ

n ´ 1

y

˙

pyp1 ´ pq
n´1´y

` np
n´1
ÿ

y“0

ˆ

n ´ 1

y

˙

pyp1 ´ pq
n´1´y

“ np ¨ pn ´ 1qp ` np

“ npn ´ 1qp2 ` np.

And now
Var pXq “ EX2

´ pEXq
2

“ npn ´ 1qp2 ` np ´ pnpq
2

“ np ´ np2

“ npp1 ´ pq.

Method #2:

Recall that we could write X “
řn

i“1 Ii, where Ii
i.i.d.
„ Bernoullippq. Then

Var pXq “ Var

˜

n
ÿ

i“1

Ii

¸

“

n
ÿ

i“0

Var pIiq (Ii’s are independent)

“ nVar pIiq (Ii’s are identically distributed)

“ n
“

EpI2i q ´ pEIiq
2
‰

“ n
“

p ´ p2
‰

“ npp1 ´ pq.

Definition Let X be a random variable with cdf FX . The moment generating function (mgf)
of X (or FX), denoted by MXptq, is

MXptq “ EetX ,

provided that the expectation exists for t in some neighborhood of 0. That is, there is an
h ą 0 such that, for all t in ´h ă t ă h, EetX exists. If the expectation does not exist in a
neighborhood of 0, we say that the moment generating function does not exist.

More explicitly, we can write the mgf of X as
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MXptq “

ż 8

´8

etxfXpxqdx, if X is continuous,

or
MXptq “

ÿ

x

etx PrpX “ xq, if X is discrete.

It is easy to see how the mgf generates moments as in the following theorem.

Theorem If X has mgf MXptq, then

EXn
“ M

pnq

X p0q,

where we define

M
p0q

X “
dn

dtn
MXptq

∣∣∣∣
t“0

.

That is, the nth moment is equal to the nth derivative of MXptq evaluated at t “ 0.

Proof:

d

dt
MXptq “

d

dt

ż 8

´8

etxfXpxqdx

“

ż 8

´8

ˆ

d

dt
etx

˙

fXpxqdx

“

ż 8

´8

`

xetx
˘

fXpxqdx

“ EpXetXq.

Therefore,
d

dt
MXptq

∣∣∣∣
t“0

“ EpXetXq

∣∣∣∣
t“0

“ EX.

Proceeding in an analogous manner, we can establish that

dn

dtn
MXptq

∣∣∣∣
t“0

“ EpXnetXq

∣∣∣∣
t“0

“ EXn.
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Lecture 19: Oct 14

Last time

• Midterm exam 1 review

Today

• Internal midterm evaluation open

• Presentations

• Moment generating function

Definition Let X be a random variable with cdf FX . The moment generating function (mgf)
of X (or FX), denoted by MXptq, is

MXptq “ EetX ,

provided that the expectation exists for t in some neighborhood of 0. That is, there is an
h ą 0 such that, for all t in ´h ă t ă h, EetX exists. If the expectation does not exist in a
neighborhood of 0, we say that the moment generating function does not exist.

More explicitly, we can write the mgf of X as

MXptq “

ż 8

´8

etxfXpxqdx, if X is continuous,

or
MXptq “

ÿ

x

etx PrpX “ xq, if X is discrete.

It is easy to see how the mgf generates moments as in the following theorem.

Theorem If X has mgf MXptq, then

EXn
“ M

pnq

X p0q,

where we define

M
pnq

X p0q “
dn

dtn
MXptq

∣∣∣∣
t“0

.

That is, the nth moment is equal to the nth derivative of MXptq evaluated at t “ 0.
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Proof:

d

dt
MXptq “

d

dt

ż 8

´8

etxfXpxqdx

“

ż 8

´8

ˆ

d

dt
etx

˙

fXpxqdx

“

ż 8

´8

`

xetx
˘

fXpxqdx

“ EpXetXq.

Therefore,
d

dt
MXptq

∣∣∣∣
t“0

“ EpXetXq

∣∣∣∣
t“0

“ EX.

Proceeding in an analogous manner, we can establish that

dn

dtn
MXptq

∣∣∣∣
t“0

“ EpXnetXq

∣∣∣∣
t“0

“ EXn.

Example (Binomial mgf) Let X „ Binomialpn, pq, then its mgf is

MXptq “

n
ÿ

x“0

etx
ˆ

n

x

˙

pxp1 ´ pq
n´x

“

n
ÿ

x“0

ˆ

n

x

˙

ppetqxp1 ´ pq
n´x

“ rpet ` p1 ´ pqs
n.

Theorem Let FXpxq and FY pyq be two cdfs all of whose moments exist.

1. If X and Y have bounded support, then FXpuq “ FY puq for all u if and only if
EXr “ EY r for all integers r “ 0, 1, 2, . . . .

2. If the moment generating functions exist and MXptq “ MY ptq for all t in some neigh-
borhood of 0, then FXpuq “ FY puq for all u.

Theorem (Convergence of mgfs) Suppose tXi, i “ 1, 2, . . . u is a sequence of random vari-
ables, each with mgf MXi

ptq. Furthermore, suppose that

lim
iÑ8

MXi
ptq “ MXptq, for all t in a neighborhood of 0,

and MXptq is an mgf. Then there is a unique cdf FX whose moments are determined by
MXptq and, for all x where FXpxq is continuous, we have

lim
iÑ8

FXi
pxq “ FXpxq.

That is, convergence, for |t| ă h, of mgfs to an mgf implies convergence of cdfs.

60



Poisson approximation One approximation that is usually taught in elementary statistics
courses is that binomial probabilities can be approximated by Poisson probabilities. It is
taught that the Poisson approximation is valid “when n is large and np is small”, and rules
of thumb are sometimes given.

The Poissonpλq pmf is given by

PrpX “ xq “
e´λλx

x!
, x “ 0, 1, 2, . . . ,

where λ is a positive constant. The approximation states that if X „ Binomialpn, pq and
Y „ Poissonpλq, with λ “ np, then

PrpX “ xq « PrpY “ xq

for large n and small np. We now show that the mgf converge, lending credence to this
approximation. Recall that

MXptq “ rpet ` p1 ´ pqs
n.

For the Poissonpλq distribution, we can calculate (HW4, exercise 2.33)

MY ptq “ eλpet´1q,

and if we define p “ λ{n, then MXptq “ r1 ` pet ´ 1qλ{ns
n
such that MXptq Ñ MY ptq as

n Ñ 8.

Theorem For any constant a and b, the mgf of the random variable aX ` b is given by

MaX`b “ ebtMXpatq.

Proof:
By definition,

MaX`b “ E
`

epaX`bqt
˘

“ E
`

epaXqtebt
˘

“ ebtE
`

epaXqt
˘

“ ebtMXpatq.
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Lecture 20: Oct 17

Last time

• Presentations

• Moment generating function

Today

• Internal midterm evaluation open

• Moment generating function

• Common Discrete Distributions (Chapter 3)

Definition Let X be a random variable with cdf FX . The moment generating function (mgf)
of X (or FX), denoted by MXptq, is

MXptq “ EetX ,

provided that the expectation exists for t in some neighborhood of 0. That is, there is an
h ą 0 such that, for all t in ´h ă t ă h, EetX exists. If the expectation does not exist in a
neighborhood of 0, we say that the moment generating function does not exist.

More explicitly, we can write the mgf of X as

MXptq “

ż 8

´8

etxfXpxqdx, if X is continuous,

or
MXptq “

ÿ

x

etx PrpX “ xq, if X is discrete.

It is easy to see how the mgf generates moments as in the following theorem.

Theorem If X has mgf MXptq, then

EXn
“ M

pnq

X p0q,

where we define

M
pnq

X p0q “
dn

dtn
MXptq

∣∣∣∣
t“0

.

That is, the nth moment is equal to the nth derivative of MXptq evaluated at t “ 0.
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Proof:

d

dt
MXptq “

d

dt

ż 8

´8

etxfXpxqdx

“

ż 8

´8

ˆ

d

dt
etx

˙

fXpxqdx

“

ż 8

´8

`

xetx
˘

fXpxqdx

“ EpXetXq.

Therefore,
d

dt
MXptq

∣∣∣∣
t“0

“ EpXetXq

∣∣∣∣
t“0

“ EX.

Proceeding in an analogous manner, we can establish that

dn

dtn
MXptq

∣∣∣∣
t“0

“ EpXnetXq

∣∣∣∣
t“0

“ EXn.

Example (Binomial mgf) Let X „ Binomialpn, pq, then its mgf is

MXptq “

n
ÿ

x“0

etx
ˆ

n

x

˙

pxp1 ´ pq
n´x

“

n
ÿ

x“0

ˆ

n

x

˙

ppetqxp1 ´ pq
n´x

“ rpet ` p1 ´ pqs
n.

Theorem Let FXpxq and FY pyq be two cdfs all of whose moments exist.

1. If X and Y have bounded support, then FXpuq “ FY puq for all u if and only if
EXr “ EY r for all integers r “ 0, 1, 2, . . . .

2. If the moment generating functions exist and MXptq “ MY ptq for all t in some neigh-
borhood of 0, then FXpuq “ FY puq for all u.

Theorem (Convergence of mgfs) Suppose tXi, i “ 1, 2, . . . u is a sequence of random vari-
ables, each with mgf MXi

ptq. Furthermore, suppose that

lim
iÑ8

MXi
ptq “ MXptq, for all t in a neighborhood of 0,

and MXptq is an mgf. Then there is a unique cdf FX whose moments are determined by
MXptq and, for all x where FXpxq is continuous, we have

lim
iÑ8

FXi
pxq “ FXpxq.

That is, convergence, for |t| ă h, of mgfs to an mgf implies convergence of cdfs.
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Poisson approximation One approximation that is usually taught in elementary statistics
courses is that binomial probabilities can be approximated by Poisson probabilities. It is
taught that the Poisson approximation is valid “when n is large and np is small”, and rules
of thumb are sometimes given.

The Poissonpλq pmf is given by

PrpX “ xq “
e´λλx

x!
, x “ 0, 1, 2, . . . ,

where λ is a positive constant. The approximation states that if X „ Binomialpn, pq and
Y „ Poissonpλq, with λ “ np, then

PrpX “ xq « PrpY “ xq

for large n and small np. We now show that the mgf converge, lending credence to this
approximation. Recall that

MXptq “ rpet ` p1 ´ pqs
n.

For the Poissonpλq distribution, we can calculate (HW4, exercise 2.33)

MY ptq “ eλpet´1q,

and if we define p “ λ{n, then MXptq “ r1 ` pet ´ 1qλ{ns
n
such that MXptq Ñ MY ptq as

n Ñ 8.

Theorem For any constant a and b, the mgf of the random variable aX ` b is given by

MaX`b “ ebtMXpatq.

Proof:
By definition,

MaX`b “ E
`

epaX`bqt
˘

“ E
`

epaXqtebt
˘

“ ebtE
`

epaXqt
˘

“ ebtMXpatq.

Common Discrete Distribution

Why parametric models?

• Parametric models or distribution families have a specific form but can change accord-
ing to a fixed number of parameters.

• The objective is to model a population. Parametric models are often appropriate in
common situations with similar mechanisms.

• Parametric models have many known and useful properties and are easy to work with.
When fitting a population, only a few parameters need to be estimated: parametric
inference.
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• Sometimes one does not want to make parametric assumptions and would rather work
with non-parametric models. But non-parametric models can be infinite dimensional.

• In this course, we emphasize parametric models.

Discrete uniform X has the discrete unifromp1, Nq distribution if X is equally likely to be
one of t1, 2, . . . , Nu.

• Sample space: t1, 2, . . . , Nu

• pmf:

fXpxq “
1

N
, x “ 1, 2, . . . , N

• cdf:

FXpxq “ PrpX ď xq “

$

’

&

’

%

0 x ă 0

txu{N 0 ď x ă N

1 N ď x

• moments:

EX “
N ` 1

2

Bernoulli Distribution Consider an experiment where outcomes are binary (say, Success or
Failure) and the probability of success is p. Define the following random variable

Y “

#

1 outcome is success

0 outcome is failure

Then, Y has a Bernoulli Distribution.

• Sample space: t0, 1u.

• pmf: PrpY “ 1q “ p and PrpY “ 0q “ 1 ´ p. We can write this as:

fpyq “ PrpY “ yq “

#

pyp1 ´ pq1´y y “ 0, 1

0 othersie

• what are the cdf, mean and variance?

Binomial Distribution A Binomialpn, pq random variable X is defined as the number of suc-
cesses in n i.i.d. (independent, identically distributed) Bernoulli trials, each with probability
p of success:

X “

n
ÿ

i“1

Yi, Y1, . . . , Yn
i.i.d.
„ Bernoullippq

• Sample space: t0, 1, . . . , nu

65



• pmf:

fXpsq “

#

`

n
s

˘

pxp1 ´ pqn´s s “ 0, 1, . . . , n

0 otherwise

• cdf:

FXpxq “

x
ÿ

s“0

ˆ

n

s

˙

psp1 ´ pq
n´s (no closed form)

Poisson Distribution The Poisson distribution was derived by the French mathematician
Poisson in 1837 as a limiting version of the binomial distribution. The Poisson distribution
is often used to model the number of occurrences in a given time interval. One of the basic
assumptions on which the Poisson distribution is built is that, for small time intervals, the
probability of an arrival is proportional to the length of waiting time. This makes it a
reasonable model for situations such as waiting for a bus, waiting for customers to arrive in
a bank.

The Poisson distribution has a single parameter λ, sometimes called the intensity parameter.
A Poisson random variable X, takes values in the nonnegative integers with pmf

PrpX “ x|λq “
e´λλx

x!
, x “ 0, 1, . . .

To see that
ř8

x“0 P pX “ x|λq “ 1, recall the Taylor series expansion of eλ “
8
ř

i“0

λi

i!
. Thus

8
ÿ

x“0

PrpX “ x|λq “ e´λ
8
ÿ

x“0

λx

x!
“ e´λeλ “ 1

What is the mean and variance of X?

EX “

8
ÿ

x“0

x
e´λλx

x!

“

8
ÿ

x“1

e´λλx

px ´ 1q!

“ λ
8
ÿ

x“1

e´λλx´1

px ´ 1q!

“ λ
8
ÿ

y“0

e´λλy

y!

“ λ
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Similarly

EX2
“

8
ÿ

x“0

x2 e
´λλx

x!

“

8
ÿ

x“1

x
e´λλx

px ´ 1q!

“

8
ÿ

x“1

e´λλx

px ´ 1q!
`

8
ÿ

x“2

e´λλx

px ´ 2q!

“ λ ` λ2

So that
V arpXq “ EX2

´ pEXq
2

“ λ

• Sample space: {0, 1, . . . }

• pmf: PrpX “ xq “ e´λλx

x!

• cdf: FXpxq “
řx

s“0
e´λλs

s!
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Lecture 21: Oct 19

Last time

• Internal midterm evaluation open

• Moment generating function

Today

• Common Discrete Distributions (Chapter 3)

Binomial Distribution A Binomialpn, pq random variable X is defined as the number of suc-
cesses in n i.i.d. (independent, identically distributed) Bernoulli trials, each with probability
p of success:

X “

n
ÿ

i“1

Yi, Y1, . . . , Yn
i.i.d.
„ Bernoullippq

• Sample space: t0, 1, . . . , nu

• pmf:

fXpsq “

#

`

n
s

˘

pxp1 ´ pqn´s s “ 0, 1, . . . , n

0 otherwise

• cdf:

FXpxq “

x
ÿ

s“0

ˆ

n

s

˙

psp1 ´ pq
n´s (no closed form)

Poisson Distribution The Poisson distribution was derived by the French mathematician
Poisson in 1837 as a limiting version of the binomial distribution. The Poisson distribution
is often used to model the number of occurrences in a given time interval. One of the basic
assumptions on which the Poisson distribution is built is that, for small time intervals, the
probability of an arrival is proportional to the length of waiting time. This makes it a
reasonable model for situations such as waiting for a bus, waiting for customers to arrive in
a bank.

The Poisson distribution has a single parameter λ, sometimes called the intensity parameter.
A Poisson random variable X, takes values in the nonnegative integers with pmf

PrpX “ x|λq “
e´λλx

x!
, x “ 0, 1, . . .

To see that
ř8

x“0 P pX “ x|λq “ 1, recall the Taylor series expansion of eλ “
8
ř

i“0

λi

i!
. Thus

8
ÿ

x“0

PrpX “ x|λq “ e´λ
8
ÿ

x“0

λx

x!
“ e´λeλ “ 1
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What is the mean and variance of X?

EX “

8
ÿ

x“0

x
e´λλx

x!

“

8
ÿ

x“1

e´λλx

px ´ 1q!

“ λ
8
ÿ

x“1

e´λλx´1

px ´ 1q!

“ λ
8
ÿ

y“0

e´λλy

y!

“ λ

Similarly

EX2
“

8
ÿ

x“0

x2 e
´λλx

x!

“

8
ÿ

x“1

x
e´λλx

px ´ 1q!

“

8
ÿ

x“1

e´λλx

px ´ 1q!
`

8
ÿ

x“2

e´λλx

px ´ 2q!

“ λ ` λ2

So that
V arpXq “ EX2

´ pEXq
2

“ λ

• Sample space: {0, 1, . . . }

• pmf: PrpX “ xq “ e´λλx

x!

• cdf: FXpxq “
řx

s“0
e´λλs

s!

Hypergeometric Distribution Suppose a population of N entities is made up of two types:
M of the first type and N ´M of the second type. Suppose we take a sample of size K. We
wish to know X, the number in the sample of the first type. The probability mass function
of X is given by:

fXpxq “

`

M
x

˘`

N´M
k´x

˘

`

N
k

˘

for x “ maxp0,M ´ N ` Kq, . . . ,minpM,Kq.

The sample space is defined so that all binomial coefficients are valid. We must have:

0 ď x ď K, 0 ď x ď M, 0 ď K ´ x ď N ´ M

Often K ă M and K ă N ´ M so the range becomes 0 ď x ď K.
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Hypergeometric vs Binomial We can show that the limiting form of the hypergeometric pmf
is the binomial pmf

Prpsq “

`

M
s

˘`

N´M
n´s

˘

`

N
n

˘

“

M !
s!pM´sq!

pN´Mq!
pn´sq!pN´M´n`sq!

N !
n!pN´nq!

“

n!
s!pn´sq!

M !
pM´sq!

pN´Mq!
pN´M´n`sq!

N !
pN´nq!

Note

M !

pM ´ sq!
“

MpM ´ 1qpM ´ 2q . . . pM ´ sq!

pM ´ sq!

“ M s

„

1p1 ´
1

M
q . . . p1 ´

s ´ 1

M
q

ȷ

N !

pN ´ nq!
“ Nn

„

1p1 ´
1

N
q . . . p1 ´

n ´ 1

N
q

ȷ

pN ´ Mq!

rpN ´ Mq ´ pn ´ sqs!
“ pN ´ Mq

n´s

„

1p1 ´
1

N ´ M
q . . . p1 ´

n ´ s ´ 1

N ´ M
q

ȷ

Letting N Ñ 8,M Ñ 8, M
N

Ñ p, we have

Prpsq “

`

M
s

˘`

N´M
n´s

˘

`

N
s

˘

«

ˆ

n

s

˙

M spN ´ Mqn´s

Nn

“

ˆ

n

s

˙ˆ

M

N

˙sˆ

1 ´
M

N

˙n´s

Ñ

ˆ

n

s

˙

psp1 ´ pq
n´s

In summary, we have

Hypergeometric Ñ Binomial Ñ Poisson

N Ñ 8 n Ñ 8 λ “ np

M Ñ 8 p Ñ 0
M
N

Ñ p np Ñ λ

Geometric Distribution Consider a series of iid Bernoulli Trials with p = probability of
success in each trial. Define a random variable X representing the number of trials until
first success. Note X includes the trial at which the success occurs (one parameterization).
Then, X has a geometric distribution.
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• Sample space: t1, 2, . . . u

• pmf:

fpxq “ PrpX “ xq “

#

pp1 ´ pqx´1 x “ 1, 2, . . .

0 otherwise

• cdf:
F pxq “ PrpX ď xq “ 1 ´ p1 ´ pq

x

• Moments:
EpXq “ 1{p

V arpXq “ p1 ´ pq{p2

Memoryless property. Suppose k ą i, then

PrpX ą k|X ą iq “ PrpX ą k ´ iq

Proof:

PrpX ą k|X ą iq “
PrpX ą kq

PrpX ą iq
“

p1 ´ pqk

p1 ´ pqi

“ p1 ´ pq
k´i

“ PrpX ą k ´ iq

Example Suppose X is number of years you live, and X follows a geometric distribution,
then

Prpsurvive two more yearsq “ PrpX ą current age ` 2|X ą current ageq

“ PrpX ą 2q

This model is clearly too simple for human populations (since we do age).

Negative Binomial Distribution Still in the context of iid Bernoulli trials, define a random
variable corresponding to the number of trials required to have s successes. We say X „

Negbinps, pq.

• Sample space: ts, ps ` 1q, . . . u

• pmf: for x “ s, s ` 1, s ` 2, . . .

fpxq “

ˆ

x ´ 1

s ´ 1

˙

ps´1qx´s
¨ p

“

ˆ

x ´ 1

s ´ 1

˙

psqx´s

• cdf: no closed form

• Expectation: EX “ s{p.

• Variance: V arpXq “ sp1 ´ pq{p2
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Notes

• Why the name? See Casella & Berger p.95.

• X „ Negbinp1, pq is the same as X „ Geometricppq

• Negbinpn, pq is the same as the sum of n Geometricppq random variables

Other parameterizations The negative binomial distribution is sometimes defined in terms
of the random variable Y “ number of failures before the rth success. Then

• Sample space: t0, 1, 2, . . . u

• pmf

fpyq “

ˆ

r ` y ´ 1

y

˙

prqy, y “ 0, 1, 2, . . .

• cdf: no closed form

• Expectation: EY “ rp1 ´ pq{p

• Variance: V arpY q “ rp1 ´ pq{p2

Negarive binomial vs. Poisson The negative binomial distribution is often good for modeling
count data as an alternative to the Poisson. In the previous parameterization, define

λ “
rp1 ´ pq

p
ðñ p “

r

r ` λ

Then we have
EX “ λ

V arpXq “
λ

p
“ λp1 `

λ

r
q “ λ `

λ2

r

For the Poisson we had that the variance equals the mean.
For the negative binomial, the variance is equal to the mean plus a quadratic term. Thus
the negative binomial can capture overdispersion in count data.
In the previous parameterization, the pmf becomes

fpyq “

ˆ

r ` y ´ 1

y

˙

prqy “
pr ` y ´ 1q!

y!pr ´ 1q!

ˆ

r

r ` λ

˙sˆ
λ

r ` λ

˙y

“
λx

x!

sps ` 1q . . . ps ` x ´ 1q

ps ` λqx

ˆ

1 `
λ

s

˙´s

Letting s Ñ 8, we get

fpxq Ñ
λx

x!
e´λ

So for large s, the negative binomial can be approximated by a Poisson with parameter
λ “ rp1 ´ pq{p.
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Lecture 22: Oct 21

Last time

• Common Discrete Distributions (Chapter 3)

Today

• Presentations

• Common Discrete Distributions (Chapter 3)

Geometric Distribution Consider a series of iid Bernoulli Trials with p = probability of
success in each trial. Define a random variable X representing the number of trials until
first success. Note X includes the trial at which the success occurs (one parameterization).
Then, X has a geometric distribution.

• Sample space: t1, 2, . . . u

• pmf:

fpxq “ PrpX “ xq “

#

pp1 ´ pqx´1 x “ 1, 2, . . .

0 otherwise

• cdf:
F pxq “ PrpX ď xq “ 1 ´ p1 ´ pq

x

• Moments:
EpXq “ 1{p

V arpXq “ p1 ´ pq{p2

Memoryless property. Suppose k ą i, then

PrpX ą k|X ą iq “ PrpX ą k ´ iq

Proof:

PrpX ą k|X ą iq “
PrpX ą kq

PrpX ą iq
“

p1 ´ pqk

p1 ´ pqi

“ p1 ´ pq
k´i

“ PrpX ą k ´ iq

Example Suppose X is number of years you live, and X follows a geometric distribution,
then

Prpsurvive two more yearsq “ PrpX ą current age ` 2|X ą current ageq

“ PrpX ą 2q

This model is clearly too simple for human populations (since we do age).
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Negative Binomial Distribution Still in the context of iid Bernoulli trials, define a random
variable corresponding to the number of trials required to have s successes. We say X „

Negbinps, pq.

• Sample space: ts, ps ` 1q, . . . u

• pmf: for x “ s, s ` 1, s ` 2, . . .

fpxq “

ˆ

x ´ 1

s ´ 1

˙

ps´1qx´s
¨ p

“

ˆ

x ´ 1

s ´ 1

˙

psqx´s

• cdf: no closed form

• Expectation: EX “ s{p.

• Variance: V arpXq “ sp1 ´ pq{p2

Notes

• Why the name? See Casella & Berger p.95.

• X „ Negbinp1, pq is the same as X „ Geometricppq

• Negbinpn, pq is the same as the sum of n Geometricppq random variables

Other parameterizations The negative binomial distribution is sometimes defined in terms
of the random variable Y “ number of failures before the rth success. Then

• Sample space: t0, 1, 2, . . . u

• pmf

fpyq “

ˆ

r ` y ´ 1

y

˙

prqy, y “ 0, 1, 2, . . .

• cdf: no closed form

• Expectation: EY “ rp1 ´ pq{p

• Variance: V arpY q “ rp1 ´ pq{p2

Negarive binomial vs. Poisson The negative binomial distribution is often good for modeling
count data as an alternative to the Poisson. In the previous parameterization, define

λ “
rp1 ´ pq

p
ðñ p “

r

r ` λ

Then we have
EX “ λ

V arpXq “
λ

p
“ λp1 `

λ

r
q “ λ `

λ2

r
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For the Poisson we had that the variance equals the mean.
For the negative binomial, the variance is equal to the mean plus a quadratic term. Thus
the negative binomial can capture overdispersion in count data.
In the previous parameterization, the pmf becomes

fpyq “

ˆ

r ` y ´ 1

y

˙

prqy “
pr ` y ´ 1q!

y!pr ´ 1q!

ˆ

r

r ` λ

˙sˆ
λ

r ` λ

˙y

“
λx

x!

sps ` 1q . . . ps ` x ´ 1q

ps ` λqx

ˆ

1 `
λ

s

˙´s

Letting s Ñ 8, we get

fpxq Ñ
λx

x!
e´λ

So for large s, the negative binomial can be approximated by a Poisson with parameter
λ “ rp1 ´ pq{p.
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Lecture 23: Oct 24

Last time

• Common Discrete Distributions (Chapter 3)

Today

• Will start taking attendance (no punishment)

• Example application of what you learn

• Negative binomial distribution

• Common Continuous Distributions

Negative Binomial Distribution Still in the context of iid Bernoulli trials, define a random
variable corresponding to the number of trials required to have s successes. We say X „

Negbinps, pq.

• Sample space: ts, ps ` 1q, . . . u

• pmf: for x “ s, s ` 1, s ` 2, . . .

fpxq “

ˆ

x ´ 1

s ´ 1

˙

ps´1qx´s
¨ p

“

ˆ

x ´ 1

s ´ 1

˙

psqx´s

• cdf: no closed form

• Expectation: EX “ s{p.

• Variance: V arpXq “ sp1 ´ pq{p2

Notes

• Why the name? See Casella & Berger p.95.

• X „ Negbinp1, pq is the same as X „ Geometricppq

• Negbinpn, pq is the same as the sum of n Geometricppq random variables

Other parameterizations The negative binomial distribution is sometimes defined in terms
of the random variable Y “ number of failures before the rth success. Then

• Sample space: t0, 1, 2, . . . u

• pmf

fpyq “

ˆ

r ` y ´ 1

y

˙

prqy, y “ 0, 1, 2, . . .
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• cdf: no closed form

• Expectation: EY “ rp1 ´ pq{p

• Variance: V arpY q “ rp1 ´ pq{p2

Negarive binomial vs. Poisson The negative binomial distribution is often good for modeling
count data as an alternative to the Poisson. In the previous parameterization, define

λ “
rp1 ´ pq

p
ðñ p “

r

r ` λ

Then we have
EX “ λ

V arpXq “
λ

p
“ λp1 `

λ

r
q “ λ `

λ2

r

For the Poisson we had that the variance equals the mean.
For the negative binomial, the variance is equal to the mean plus a quadratic term. Thus
the negative binomial can capture overdispersion in count data.
In the previous parameterization, the pmf becomes

fpyq “

ˆ

r ` y ´ 1

y

˙

prqy “
pr ` y ´ 1q!

y!pr ´ 1q!

ˆ

r

r ` λ

˙r ˆ
λ

r ` λ

˙y

“
λy

y!

rpr ` 1q . . . pr ` y ´ 1q

pr ` λqy

ˆ

1 `
λ

r

˙´r

Letting r Ñ 8, we get

fpxq Ñ
λx

x!
e´λ

So for large r, the negative binomial can be approximated by a Poisson with parameter
λ “ rp1 ´ pq{p.

Common continuous distributions

Uniform Distribution A random variable X having a pdf

fpxq “

#

1 for 0 ă x ď 1

0 otherwise

is said to have a uniform distribution over the interval p0, 1q.

The cdf is:

F pyq “

ż y

´8

fpxqdx “

$

’

&

’

%

0 for y ď 0

y for 0 ď y ď 1

1 for y ą 1

• Unifrom; Y „ U ra, bs
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• sample space: ra, bs

• pdf:

fpyq “

#

1
b´a

for a ă y ď b

0 otherwise

• cdf:

F pyq “

ż y

´8

fpxqdx “

$

’

&

’

%

0 for y ď a
y´a
b´a

for a ď y ď b

1 for y ą b

• moments:
EpY q “ pa ` bq{2

V arpY q “
pb ´ aq2

12

Notes

• The uniform extends to the continuous case the idea of equally likely outcomes.

• If Y „ U r0, 1s, then a ` pb ´ aqY „ U ra, bs

Exponential Distribution Denoted X „ Exppλq:

• sample space: x ě 0

• pdf:

fpxq “

#

λe´λy for y ě 0

0 otherwise

• cdf:

F pxq “

ż x

´8

fpyqdy “

#

1 ´ e´λx for x ě 0

0 for x ă 0

• moments:
EpXq “ 1{λ

V arpXq “ 1{λ2

MXptq “ λ{pλ ´ tq, t ă λ

Interpretation The exponential can be derived as the waiting time between Poisson events.
Suppose that the number of events in a unit interval of time follows a Poisson(λ) distribution.
Then, let Y be the time until the first event.

PrpY ą tq “ Prp0 events in r0, tsq

and the number of events in r0, ts follows a Poisson distribution with parameter λt. Therefore,

PrpY ą tq “ e´λt.
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The cdf of Y is
F ptq “ 1 ´ PrpY ą tq “ 1 ´ e´λt

and hence the density is fptq “ λe´λt.

Alternative parameterization Many books write the density as

fpyq “

#

1
θ
e´y{θ for y ě 0

0 otherwise

so that EpY q “ θ and V arpY q “ θ2. In this case θ “ 1{λ is called the mean parameter,
while λ “ 1{θ is called the rate parameter.

Memoryless property The exponential has a memoryless property, just like the geometric.

PrpY ą s ` t|Y ą tq “ PrpY ą sq

Same interpretation as the geometric for continuous time:

• The probability of an event in a time interval depends only on the length of the interval,
not the absolute time of the interval.

• The underlying Poisson process is stationary: the rate λ is constant. (In the geometric
case, the probability, p of getting an event in every discrete time unit is constant).

Shifted exponential Let X „ Exppλq and Y “ X ` v, v P R. Then, Y has the shifted
exponential distribution with pdf:

fpyq “

#

λe´py´vqλ for y ě v

0 otherwise

Interpretation:

• v ą 0: Event is delayed

• v ă 0: The news of the event is delayed

Does the shifted expoenential maintain the memoryless property?

Double exponential The double exponential distribution is formed by reflecting an exponen-
tial distribution around zero. It has pdf:

fpxq “
1

2
λe´λ|x|, x P R

Suppose X has the above distribution with λ “ 1. Now let Y “ σX ` µ, µ P R (shifting)
and σ ą 0 (scaling). Then Y has the Laplace distribution with pdf:

fY pyq “
1

2σ
exp

ˆ

´
|y ´ µ|

σ

˙

79



with moments
EY “ µ, V arpY q “ 2σ2

The Laplace distribution provides an alternative to the normal for centered data with fatter
tails but all finite moments.
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Lecture 24: Oct 26

Last time

• Common Discrete Distributions (Chapter 3)

Today

• Negative binomial distribution

• Common Continuous Distributions

Negarive binomial vs. Poisson The negative binomial distribution is often good for modeling
count data as an alternative to the Poisson. In the previous parameterization, define

λ “
rp1 ´ pq

p
ðñ p “

r

r ` λ

Then we have
EX “ λ

V arpXq “
λ

p
“ λp1 `

λ

r
q “ λ `

λ2

r

For the Poisson we had that the variance equals the mean.
For the negative binomial, the variance is equal to the mean plus a quadratic term. Thus
the negative binomial can capture overdispersion in count data.
In the previous parameterization, the pmf becomes

fpyq “

ˆ

r ` y ´ 1

y

˙

prqy “
pr ` y ´ 1q!

y!pr ´ 1q!

ˆ

r

r ` λ

˙r ˆ
λ

r ` λ

˙y

“
λy

y!

rpr ` 1q . . . pr ` y ´ 1q

pr ` λqy

ˆ

1 `
λ

r

˙´r

Letting r Ñ 8, we get

fpxq Ñ
λx

x!
e´λ

So for large r, the negative binomial can be approximated by a Poisson with parameter
λ “ rp1 ´ pq{p.

Common continuous distributions

Uniform Distribution A random variable X having a pdf

fpxq “

#

1 for 0 ă x ď 1

0 otherwise

is said to have a uniform distribution over the interval p0, 1q.
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The cdf is:

F pyq “

ż y

´8

fpxqdx “

$

’

&

’

%

0 for y ď 0

y for 0 ď y ď 1

1 for y ą 1

• Unifrom; Y „ U ra, bs

• sample space: ra, bs

• pdf:

fpyq “

#

1
b´a

for a ă y ď b

0 otherwise

• cdf:

F pyq “

ż y

´8

fpxqdx “

$

’

&

’

%

0 for y ď a
y´a
b´a

for a ď y ď b

1 for y ą b

• moments:
EpY q “ pa ` bq{2

V arpY q “
pb ´ aq2

12

Notes

• The uniform extends to the continuous case the idea of equally likely outcomes.

• If Y „ U r0, 1s, then a ` pb ´ aqY „ U ra, bs

Exponential Distribution Denoted X „ Exppλq:

• sample space: x ě 0

• pdf:

fpxq “

#

λe´λy for y ě 0

0 otherwise

• cdf:

F pxq “

ż x

´8

fpyqdy “

#

1 ´ e´λx for x ě 0

0 for x ă 0

• moments:
EpXq “ 1{λ

V arpXq “ 1{λ2

MXptq “ λ{pλ ´ tq, t ă λ
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Interpretation The exponential can be derived as the waiting time between Poisson events.
Suppose that the number of events in a unit interval of time follows a Poisson(λ) distribution.
Then, let Y be the time until the first event.

PrpY ą tq “ Prp0 events in r0, tsq

and the number of events in r0, ts follows a Poisson distribution with parameter λt. Therefore,

PrpY ą tq “ e´λt.

The cdf of Y is
F ptq “ 1 ´ PrpY ą tq “ 1 ´ e´λt

and hence the density is fptq “ λe´λt.

Alternative parameterization Many books write the density as

fpyq “

#

1
θ
e´y{θ for y ě 0

0 otherwise

so that EpY q “ θ and V arpY q “ θ2. In this case θ “ 1{λ is called the mean parameter,
while λ “ 1{θ is called the rate parameter.

Memoryless property The exponential has a memoryless property, just like the geometric.

PrpY ą s ` t|Y ą tq “ PrpY ą sq

Same interpretation as the geometric for continuous time:

• The probability of an event in a time interval depends only on the length of the interval,
not the absolute time of the interval.

• The underlying Poisson process is stationary: the rate λ is constant. (In the geometric
case, the probability, p of getting an event in every discrete time unit is constant).

Shifted exponential Let X „ Exppλq and Y “ X ` v, v P R. Then, Y has the shifted
exponential distribution with pdf:

fpyq “

#

λe´py´vqλ for y ě v

0 otherwise

Interpretation:

• v ą 0: Event is delayed

• v ă 0: The news of the event is delayed

Does the shifted expoenential maintain the memoryless property?
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Double exponential The double exponential distribution is formed by reflecting an exponen-
tial distribution around zero. It has pdf:

fpxq “
1

2
λe´λ|x|, x P R

Suppose X has the above distribution with λ “ 1. Now let Y “ σX ` µ, µ P R (shifting)
and σ ą 0 (scaling). Then Y has the Laplace distribution with pdf:

fY pyq “
1

2σ
exp

ˆ

´
|y ´ µ|

σ

˙

with moments
EY “ µ, V arpY q “ 2σ2

The Laplace distribution provides an alternative to the normal for centered data with fatter
tails but all finite moments.
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Lecture 25: Oct 28

Last time

• Common Continuous Distributions

Today

• Common Continuous Distributions

Normal Distribution Introduced by De Moivre (1667 - 1754) in 1733 as an approximation to
the binomial. Later studied by Laplace and others as part of the Central Limit Theorem.
Gauss derived the normal as a suitable distribution for outcomes that could be thought of
as sums of many small deviations.

• Sample space: R “ p´8,8q

• pdf: For Y „ Npµ, σ2q,

fpyq “
1

?
2πσ

e´
py´µq2

2σ2 ´ 8 ă y ă 8

• cdf: There is no closed form.

• When µ “ 0 and σ “ 1, the distribution is called standard normal:

Φpyq “ PrpY ď yq, Φp´yq “ 1 ´ Φpyq

• Mean:
EY “ µ

• Variance:
V arpY q “ EpY ´ µq

2
“ σ2

• Higher central moments:

EpY ´ µq
m

“

#

m!
2m{2pm{2q!

σm m is even

0 m is odd

• In particular:
µ3 “ EpY ´ µq

3
“ 0pSkewnessq

µ4 “ EpY ´ µq
4

“ 3σ4

• Moment generating function:

MY ptq “ exppµt ` σ2t2{2q
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Standardization

Y „ Npµ, σ2
q ðñ Z “

Y ´ µ

σ
„ Np0, 1q

Shifting and scaling:

Z „ Np0, 1q ðñ Y “ σZ ` µ „ Npµ, σ2
q

Notes

• Normal distribution is useful in many practical settings. E.g. measurement error.

• Plays an important role in sampling distributions in large samples, since the Central
Limit Theorem syas that the sums of independent identically distributed random vari-
ables are approximately normal

• There are many important distributions that can be derived from functions of normal
random variables (e.g. χ2, t, F ). We will briefly present the pdf’s and sample spaces
of these distributions.
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Lecture 26: Oct 31

Last time

• Common Continuous Distributions

Today

• Common Continuous Distributions

Normal Distribution Introduced by De Moivre (1667 - 1754) in 1733 as an approximation to
the binomial. Later studied by Laplace and others as part of the Central Limit Theorem.
Gauss derived the normal as a suitable distribution for outcomes that could be thought of
as sums of many small deviations.

• Sample space: R “ p´8,8q

• pdf: For Y „ Npµ, σ2q,

fpyq “
1

?
2πσ

e´
py´µq2

2σ2 ´ 8 ă y ă 8

• cdf: There is no closed form.

• When µ “ 0 and σ “ 1, the distribution is called standard normal:

Φpyq “ PrpY ď yq, Φp´yq “ 1 ´ Φpyq

• Mean:
EY “ µ

• Variance:
V arpY q “ EpY ´ µq

2
“ σ2

• Higher central moments:

EpY ´ µq
m

“

#

m!
2m{2pm{2q!

σm m is even

0 m is odd

• In particular:
µ3 “ EpY ´ µq

3
“ 0pSkewnessq

µ4 “ EpY ´ µq
4

“ 3σ4

• Moment generating function:

MY ptq “ exppµt ` σ2t2{2q
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Standardization

Y „ Npµ, σ2
q ðñ Z “

Y ´ µ

σ
„ Np0, 1q

Shifting and scaling:

Z „ Np0, 1q ðñ Y “ σZ ` µ „ Npµ, σ2
q

Notes

• Normal distribution is useful in many practical settings. E.g. measurement error.

• Plays an important role in sampling distributions in large samples, since the Central
Limit Theorem syas that the sums of independent identically distributed random vari-
ables are approximately normal

• There are many important distributions that can be derived from functions of normal
random variables (e.g. χ2, t, F ). We will briefly present the pdf’s and sample spaces
of these distributions.
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Lecture 27: Nov. 2

Last time

• Normal Distributions

Today

• Common Continuous Distributions

• Families of Distributions

χ2 distribution If Z „ Np0, 1q, then X “ Z2 has the χ2 distribution with 1 degree of
freedom. More generally, we have the χ2 distribution with v degrees of freedom with pdf:

fpxq “
px{2q

v
2

´1e´x{2

2Γpv{2q
, x ą 0

where Γpaq is the complete gamma function,

Γpaq “

8
ż

0

xa´1e´xdx

The χ2pvq distribution is a special case of the gamma distribution, so it is easier to derive
its properties from the gamma.

Facts about the Gamma function

• Γpa ` 1q “ aΓpaq, a ą 0

• Γp1q “ 1

• Γpnq “ pn ´ 1q!

• Γp1{2q “
?
π

Student’s t and F distributions Y has a tk distribution (t with k degrees of freedom) if its
pdf can be written as:

fpyq “
Γ rpv ` 1q{2s
?
vπΓpv{2q

1

p1 ` y2{vqpv`1q{2
, ´8 ă y ă 8

Y has an F pv1, v2q distribution if its pdf can be written as:

fpyq “
pv1{v2qΓ rpv1 ` v2q{2s pv1y{v2q

v1{2´1

Γpv1{2qΓpv2{2qp1 ` v1y{v2qpv1`v2q{2
, 0 ď y ă 8

There are many important properties and relationships between these three distributions
(e.g. χ2

k is the distribution of the sum of the squares of k independent standard normals).
We’ll come back to these in a few weeks when we do sampling distributions and transforma-
tions of the normal distribution (if time permits).
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Gamma distribution Notation: Y „ Gammapa, λq.

• pdf:

fpyq “
λe´λypλyqa´1

Γpaq
, y ě 0

where Γpaq is the gamma function,

Γpaq “

8
ż

0

xa´1e´xdx

• cdf: In general, there is no closed form, unless a is an integer.

• moments:
EpY q “ a{λ

V arpY q “ a{λ2

• MGF:

MY ptq “

ˆ

1

1 ´ t{λ

˙a

, t ă θ

Another parameterization Same as the exponential distribution, we can let β “ 1
λ
, then we

have

• pdf:

fpyq “
ya´1e´y{β

Γpaqβa
, y ě 0

• moments:
EX “ αβ

V arpXq “ αβ2

• MGF:

MY ptq “

ˆ

1

1 ´ tβ

˙a

, t ă
1

β

Notes:

• The special case a “ 1 corresponds to an exponentialpλq

• The parameter a is known as the shape parameter, since it most influences the peaked-
ness of the distribution.

• The parameter β is called the scale parameter since most of its influence is on the
spread of the distribution.

• The special case Gammapa “ n{2, λ “ 1{2q, for integer n, corresponds to the χ2
n

distribution with n degrees of freedom.

• The gamma distribution can be derived as the sum of a independent exponentialpλq

distributions.
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Lecture 28: Nov. 4

Last time

• Common continuous distributions

Today

• Presentations

• Families of Distributions

Beta distribution Notation: Y „ Betapa, bq.

• Sample space: r0, 1s

• pdf:

fpyq “
ya´1p1 ´ yqb´1

Bpa, bq
, 0 ď y ď 1

where Bpa, bq is the Beta function,

Bpa, bq “

1
ż

0

xa´1
p1 ´ xq

b´1dx “
ΓpaqΓpbq

Γpa ` bq
,

and Γpaq is the gamma function. Note that if a and b are integers, then Bpa, bq can be
calculated in closed form.

• cdf: In general, there is no closed form, except if a and b are integers.

• moments:
EY “

a

a ` b

V arpY q “
ab

pa ` bq2pa ` b ` 1q

The beta distribution is very flexible, and can take a wide variety of shapes by varying
its parameters.

• Special case: Betap1, 1q “ Up0, 1q.

Omitted distributions: Weibull distribution, and Cauchy distribution.

Exponential Families A family of pdfs or pmfs with vector parameter θ is called an expo-
nential family if it can be expressed as

fpx|θq “ hpxqcpθqexp

˜

k
ÿ

j“1

wjpθqtjpxq

¸

, x P S Ă R (1)
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where S is not defined in terms of θ, hpxq, cpθq ě 0 and the functions are just functions of
the parameters specified; i.e. h is free of θ, cpθq is free of x, etc...

Examples:

• One-dimensional: Exponential, Poisson

• Two-dimensional: Gaussian

Exponential family parameterizations are unique except for multiplying constant factors.

Example: Gaussian Let fpx|µ, σ2q be the npµ, σ2q family of pdfs, where θ “ pµ,
sigmaq. Then

fpx|µ, σ2
q “

1
?
2πσ

exp

ˆ

´
px ´ µq2

2σ2

˙

“
1

?
2πσ

exp

ˆ

´
µ2

2σ2

˙

exp

ˆ

´
x2

2σ2
`

µx

σ2

˙

Thus
hpxq “ 1?

2π
cpµ, σq “ 1

σ
exp

´

´
µ2

2σ2

¯

w1pµ, σq “ ´ 1
2σ2 w2pµ, σq “

µ
σ2

t1pxq “ x2 t2pxq “ x

The parameter space is pµ, σ2q P R ˆ p0,8q.

Example: Binomial Let fpx|pq be the binomialpn, pq, 0 ă p ă 1 family of pmfs.

fpx|pq “

ˆ

n

x

˙

pxp1 ´ pq
n´x

“

ˆ

n

x

˙

p1 ´ pq
n

„

p

1 ´ p

ȷx

“

ˆ

n

x

˙

p1 ´ pq
n exp

„

log

ˆ

p

1 ´ p

˙

x

ȷ

Thus,

hpxq “
`

n
x

˘

, x “ 0, . . . , n w1ppq “ log
´

p
1´p

¯

cppq “ p1 ´ pqn, 0 ă p ă 1 t1pxq “ x

Note that this works when p is considered the parameter, while n is fixed. Also, p cannot
be 0 or 1. Otherwise, the range changes.

More examples The following distributions belong to Exponential families:

• Continuous: exponential, Gaussian, gamma, beta, χ2

• Discrete: Poisson, geometric, binomial (fixed # trials), negative binomial (fixed #
successes)

The following distributions not exponential families:
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• Continuous: t, F , unifrom E.g.:X „ Up0, θq

fXpxq “ θ´11p0 ă x ă θq

• Discrete: uniform, hypergeometric

Theorem If X is a random variable with pdf or pmf of the form 3, then

E

˜

k
ÿ

i“1

Bwipθq

Bθj
tipXq

¸

“ ´
B

Bθj
log cpθq

V ar

˜

k
ÿ

i“1

Bwipθq

Bθj
tipXq

¸

“ ´
B2

Bθ2j
log cpθq ´ E

˜

k
ÿ

i“1

B2wipθq

Bθ2j
tipXq

¸

.

Although these equations may look formidable, when applied to specific cases they can
work out quite nicely. Their advantage is that we can replace integration or summation by
differentiation, which is often more straightforward.

Example (Normal exponential family) Let fpx|µ, σ2q be the Npµ, σ2q family of pdfs, where
θ “ pµ, σq,´8 ă µ ă 8, σ ą 0. Then

fpx|µ, σ2
q “

1
?
2πσ

exp

ˆ

´
px ´ µq2

2σ2

˙

“
1

?
2πσ

exp

ˆ

´
µ2

2σ2

˙

exp

ˆ

´
x2

2σ2
`

µx

σ2

˙

Define

θ1 “ 1
σ2 ą 0, θ2 “

µ
σ2 P R

Then

fXpxq “

?
θ1

?
2π

exp

ˆ

´
θ22
2θ1

˙

exp

ˆ

´θ1
x2

2
` θ2x

˙

and
hpxq “ 1 for all x;

cpθq “ cpθ1, θ2q “ exp
´

´
θ22
2θ1

¯

, pθ1, θ2q P p0,8q ˆ R

w1pθq “ θ1 t1pxq “ ´x2{2

w2pθq “ θ2 t2pxq “ x

Therefore, by the above theorem

EpXq “ ´
B

Bθ2
log cpθq “

θ2
θ1

“ µ

V arpXq “ ´
B2

Bθ22
log cpθq “ ´

1

θ1
“ σ2

(2)
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Lecture 29: Nov. 7

Last time

• Presentations

• Exponential families

Today

• Exponential families

• Location and Scale families

• Chebychev’s Inequality

Exponential Families A family of pdfs or pmfs with vector parameter θ is called an expo-
nential family if it can be expressed as

fpx|θq “ hpxqcpθqexp

˜

k
ÿ

j“1

wjpθqtjpxq

¸

, x P S Ă R (3)

where S is not defined in terms of θ, hpxq, cpθq ě 0 and the functions are just functions of
the parameters specified; i.e. h is free of θ, cpθq is free of x, etc...

Theorem If X is a random variable with pdf or pmf of the form 3, then

E

˜

k
ÿ

i“1

Bwipθq

Bθj
tipXq

¸

“ ´
B

Bθj
log cpθq

V ar

˜

k
ÿ

i“1

Bwipθq

Bθj
tipXq

¸

“ ´
B2

Bθ2j
log cpθq ´ E

˜

k
ÿ

i“1

B2wipθq

Bθ2j
tipXq

¸

.

Although these equations may look formidable, when applied to specific cases they can
work out quite nicely. Their advantage is that we can replace integration or summation by
differentiation, which is often more straightforward.

Example (Normal exponential family) Let fpx|µ, σ2q be the npµ, σ2q family of pdfs, where
´8 ă µ ă 8, σ ą 0. Then

fpx|µ, σ2
q “

1
?
2πσ

exp

ˆ

´
px ´ µq2

2σ2

˙

“
1

?
2πσ

exp

ˆ

´
µ2

2σ2

˙

exp

ˆ

´
x2

2σ2
`

µx

σ2

˙

Define

θ1 “ 1
σ2 ą 0, θ2 “

µ
σ2 P R
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Then

fXpxq “

?
θ1

?
2π

exp

ˆ

´
θ22
2θ1

˙

exp

ˆ

´θ1
x2

2
` θ2x

˙

and
hpxq “ 1 for all x;

cpθq “ cpθ1, θ2q “
?
θ1?
2π

exp
´

´
θ22
2θ1

¯

, pθ1, θ2q P p0,8q ˆ R

w1pθq “ θ1 t1pxq “ ´x2{2

w2pθq “ θ2 t2pxq “ x

Therefore, by the above theorem

EpXq “ ´
B

Bθ2
log cpθq “

θ2
θ1

“ µ

V arpXq “ ´
B2

Bθ22
log cpθq “ ´

1

θ1
“ σ2

(4)

Location and Scale families

Let Z be a continuous random variable with pdf fpzq. Define the class of rvs

Xµ,σ “ σZ ` µ, µ P R, σ ą 0

Then

1. Xµ,σ has pdf

fµ,σpxq “
1

σ
f
´x ´ µ

σ

¯

2.
EpXq “ σEpZq ` µ, V arpXq “ σ2V arpZq

3. The variable Z “ X0,1 is called the generator and is a member of the class.

Location families and scale families

• The family of pdfs fµ,σpxq is called a location-scale family where µ is called the location
parameter, and σ is called the scale parameter.

• The family of pdfs
fµ,1pxq “ fpx ´ µq

with σ “ 1 is called a location family.

• The family of pdfs

f0,σpxq “
1

σ
f
´x

σ

¯

with µ “ 0 is called a scale family.
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Example (Exponential location family) Let fpxq “ e´x, x ě 0, and fpxq “ 0, x ă 0. To form
a location family we replace x with x ´ µ to obtain

fpx|µq “

#

e´px´µq x ´ µ ě 0

0 x ´ µ ă 0

“

#

e´px´µq x ě µ

0 x ă µ

Figure 29.4: Figure 3.5.2. Exponential location densities.

As shown in the above graph, the densities are shifted. Now the positive part of the density
starts at µ rather than at 0. IfX measures time, then µmight be restricted to be nonnegative
so that X will be positive with probability 1 for every value of µ. In this type of model,
where µ denotes a bound on the range of X, µ is sometimes called a threshold parameter.

The effect of introducing the scale parameter σ is either to stretch (σ ą 1) or to contract
(σ ă 1) the graph of fpxq while still maintaining the same basic shape of the graph. This is
illustrated in the Figure below.

Figure 29.5: Figure 3.5.3. Members of the same scale family
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Probability Inequalities

The most famous, and perhaps most useful, probability inequality is Chebychev’s Inequality.

Theorem (Chebychev’s Inequality) Let X be a random variable and let gpxq be a nonnegative
function. Then, for any r ą 0,

Pr pgpXq ě rq ď
EgpXq

r
.

Proof:

EgpXq “

8
ż

´8

gpxqfXpxqdx

ě

ż

tx:gpxqěru

gpxqfXpxqdx (g is nonnegative)

ě r

ż

tx:gpxqěru

fXpxqdx

“ rPrpgpXq ě rq

Example The most widespread use of Chebychev’s Inequality involves means and variances.
Let gpxq “ px´µq2{σ2, where µ “ EX and σ2 “ V arpXq. For convenience write r “ t2.Then

Pr

ˆ

pX ´ µq2

σ2
ě t2

˙

ď
1

t2
E

„

pX ´ µq2

σ2

ȷ

“
1

t2
.

This means

Prp|X ´ µ| ě tσq ď
1

t2

and its companion

Prp|X ´ µ| ă tσq ě 1 ´
1

t2
,

which give a universal bound on the deviation |X ´ µ| in terms of σ. For example, taking
t “ 2, we get

Prp|X ´ µ| ě 2σq ď
1

22
“ 0.25,

so there is at least a 75% chance that a random variable will be within 2σ of its mean. Have
you heard of Six Sigma?
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Lecture 30: Nov. 9

Last time

• Exponential families

• Location and Scale families

• Chebychev’s Inequality

Today

• Multiple Random Variables (Chapter 4)

Joint and Marginal Distributions

In previous lectures, we have discussed probability models and computation of probability
for events involving only one random variable. These are called univariate models.

In an experimental situation, it would be very unusual to observe only the value of one
random variable. For example, in an experiment designed to gain information about some
health characteristics of a population of people, the body weights of several people in the
population might be measured. These different weights would be observations on difference
random variables, one for each person measured. Multiple observations could also arise
because several physical characteristics were measured on each person. Thus, we need to
know how to describe and use probability models that deal with more than one random
variable at a time.

Definition: An n-dimensional random vector X “ pX1, . . . , Xnq is a function from a sample
space S into Rn.

• Each coordinate Xi is a random variable.

• The random vector is associated with a probability space pRn,BpRnq, F q.

• For each Borel set B,
PrtX P Bu “ PrtX´1

pBqu (5)

where
X´1

pBq “ tw : Xpwq P Bu

Example (Bivariate random variable) A fair coin is flipped 3 times. Define the random vector
pX, Y q where X represents the number of heads on the last toss and Y the total number of
heads. Then, the probabilities of various outcomes are given in the following table:
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Outcome px, yq Prpoutcomeq

(H, H, H) (1, 3) 1{8

(H, T, H), (T, H, H) (1, 2) 2{8

(H, H, T) (0, 2) 1{8

(T, T, H) (1, 1) 1{8

(T, H, T), (H, T, T) (0, 1) 2{8

(T, T, T) (0, 0) 1{8

Definition Two random variables X and Y are said to be jointly discrete if there is an
associated joint probability mass function,

fX,Y px, yq “ PrtX “ x, Y “ yu

which sums to 1 over a finite or possibly countable combinations of x and y for which
fX,Y px, yq ą 0, i.e.,

ÿ

x,y

fX,Y px, yq “ 1

From this, one can also obtain the marginal pmfs of X and Y as follows:

fXpxq “ PrpX “ xq “
ÿ

y

fX,Y px, yq

fY pyq “ PrpY “ yq “
ÿ

x

fX,Y px, yq

Example Back to the fair coin example again. From the definition, we can construct the
joint pmf of X and Y :

Y

0 1 2 3

X
0 1{8 1{4 1{8 0

1 0 1{8 1{4 1{8

The marginal distributions of X and Y are also easy to find. Note: Marginals do not
determine joint pmf.
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Lecture 30: Nov. 9

Last time

• Chebychev’s Inequality

• Multiple Random Variables (Chapter 4)

Today

• Presentations

• Multiple Random Variables (Chapter 4)

Bivariate cdfs Whether they are discrete or continuous or some combination of the two, we
can always define the joint cdf. For n “ 2, the bivariate cumulative distribution function is

FX,Y px, yq “ PrtX ď x, Y ď yu

Properties:

• FX,Y px, yq ě 0

• FX,Y p8,8q “ 1

• FX,Y p´8, yq “ FX,Y px,´8q “ 0

• FX,Y p´8,´8q “ 0

• F is non-decreasing and right-continuous in each variable separately.

Joint probabilities All joint probability statements about X and Y can be answered in terms
of their joint cdf:

Prpx1 ă X ď x2, y1 ă Y ď y2q “

FX,Y px2, y2q ` FX,Y px1, y1q ´ FX,Y px1, y2q ´ FX,Y px2, y1q

Example
PrpX ą x, Y ą yq “ 1 ´ FXpxq ´ FY pyq ` FX,Y px, yq

Note: To ensure that a bivariate function F px, yq is a proper cdf, it must satisfy all the
properties mentioned above and the rectangular property above.

Marginal distributions From FX,Y , we can derive the univariate distribution functions for X
and Y . These are generally called marginal distributions.

FXpxq “ PrtX ď xu “ PrtX ď x, Y ď 8u “ FX,Y px,8q

FY pyq “ PrtY ď yu “ PrtX ă 8, Y ď yu “ FX,Y p8, yq

Note: Although we can obtain FXpxq and FY pyq from the joint cdf, we cannot do the reverse.
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Continuous Bivariate RVs The random variables X and Y are said to be jointly continuous
if there exists a function fX,Y px, yq, such that for any Borel set B of 2-tuples in R2,

PrtpX, Y q P Bu “

ż ż

px,yqPB

fX,Y px, yqdxdy.

The function fX,Y px, yq is called the joint probability density function for X and Y . It follows
in this case that

FX,Y px, yq “

ż x

´8

ż y

´8

fX,Y ps, tqdtds,

fX,Y px, yq “
B2F px, yq

BxBy

Properties of the bivariate pdf

• fX,Y px, yq ě 0

•
ş8

´8

ş8

´8
fX,Y px, yqdxdy “ 1

• fX,Y px, yq is not a probability, but can be thought of as a relative probability of pX, Y q

falling into a small rectangle located at px, yq:

Prtx ă X ď x ` dx, y ă Y ď y ` dyu « fpx, yqdxdy

• The marginal probability density functions for X and Y can be obtained as

fXpxq “

ż 8

´8

fX,Y px, yqdy

fY pyq “

ż 8

´8

fX,Y px, yqdx

Example 1
FX,Y px, yq “ xy 0 ă x ď 1, 0 ă y ď 1

fX,Y px, yq “
B2FX,Y px, yq

BxBy
“

fXpxq “

fY pyq “

Example 2

FX,Y px, yq “ x ´ x log
x

y
0 ă x ď y ď 1

fX,Y px, yq “
B2FX,Y px, yq

BxBy
“

fXpxq “

fY pyq “

Note: Once we have fXpxq and fY pyq, we can obtain FXpxq and FY pyq directly. Double
check: FXpxq “ FX,Y px,8q.
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Conditional Distributions

Conditional Distributions - Discrete Recall if A and B are two events, the probability of A
conditional on B is:

PrpA|Bq “
PrpA,Bq

PrpBq

Defining the events A “ tY “ yu and B “ tX “ xu, it follows that

PrtY “ y|X “ xu “
PrpX “ x, Y “ yq

PrpX “ xq

“
fX,Y px, yq

fXpxq

“ fY |Xpy|xq

This is called the conditional probability mass function of Y given X.

Example: Discrete Back to the fair coin example. From the joint pmf of X and Y , we can
derive all the conditional pmfs:

Y

0 1 2 3

X
0 1{8 1{4 1{8 0

1 0 1{8 1{4 1{8
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Lecture 32: Nov. 28

Last time

• Presentations

• Multiple Random Variables (Chapter 4)

Today

• Course evaluations

• Conditional Distributions

Example 2

FX,Y px, yq “ x ´ x log
x

y
0 ă x ď y ď 1

fX,Y px, yq “
B2FX,Y px, yq

BxBy
“

fXpxq “

fY pyq “

Note: Once we have fXpxq and fY pyq, we can obtain FXpxq and FY pyq directly. Double
check: FXpxq “ FX,Y px,8q.

Conditional Distributions

Conditional Distributions - Discrete Recall if A and B are two events, the probability of A
conditional on B is:

PrpA|Bq “
PrpA,Bq

PrpBq

Defining the events A “ tY “ yu and B “ tX “ xu, it follows that

PrtY “ y|X “ xu “
PrpX “ x, Y “ yq

PrpX “ xq

“
fX,Y px, yq

fXpxq

“ fY |Xpy|xq

This is called the conditional probability mass function of Y given X.

Example: Discrete Back to the fair coin example. From the joint pmf of X and Y , we can
derive all the conditional pmfs:

Y

0 1 2 3

X
0 1{8 1{4 1{8 0

1 0 1{8 1{4 1{8
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Conditional Distribution - Continuous If F px, yq is absolutely continuous, we define the con-
ditional density of X given Y as:

fX|Y px|yq “
fX,Y px, yq

fY pyq
, if fY pyq ą 0

Example 1

FXY px, yq “ xy 0 ă x ă 1, 0 ă y ă 1

fXY px, yq “ 1 0 ă x ă 1, 0 ă y ă 1

fXpxq “ 1 0 ă x ă 1

fY pyq “ 1 0 ă y ă 1

fX|Y px|yq “
fXY px,yq

fY pyq
“ 1 0 ă x ă 1 p0 ă y ă 1q

fY |Xpy|xq “
fXY px,yq

fXpxq
“ 1 0 ă y ă 1 p0 ă x ă 1q

Note: Here we get that the conditional densities are the same as the marginals. This means
X and Y are independent.

Example 2

FXY px, yq “ x ´ x log x
y

0 ă x ď y ď 1

fXY px, yq “ 1{y 0 ă x ď y ď 1

fXpxq “ ´ log x 0 ă x ď 1

fY pyq “ 1 0 ă y ď 1

fX|Y px|yq “
fXY px,yq

fY pyq
“ 1{y 0 ă x ď y p0 ă y ď 1q

fY |Xpy|xq “
fXY px,yq

fXpxq
“ ´ 1

y log x
x ď y ď 1 p0 ă x ď 1q

• Y is marginally uniform, but not conditionally uniform.

• X is conditionally uniform, but not marginally uniform.

Independent Random Variables

Independence The random variable X and Y are said to be independent if for any two Borel
sets A and B,

PrpX P A, Y P Bq “ PrpX P AqPrpY P Bq

All events defined in terms of X are independent of all events defined in terms of Y .

Using the Kolmogorov axioms of probability, it can be shown that X and Y are independent
if and only if @px, yq (except possibly for sets of probability 0)

FX,Y px, yq “ FXpxqFY pyq

or in terms of pmfs (discrete) and pdfs (continuous)

fX,Y px, yq “ fXpxqfY pyq
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Checking independence

• A necessary condition for independence of X and Y is that their joint pdf/pmf has
positive probability on a rectangular domain.

• If the domain is rectangular, one can try to write the joint pdf/pmf as a product of
functions of x and y only.

Example Two points are selected randomly on a line of length a so as to be on opposite
sides of the mid-point of the line. Find the probability that the distance between them is
less than a{3.

Solution:
Let X be the coordinate of a point selected randomly in r0, a{2s and Y be the coordinate of
a point selected randomly in ra{2, as. Assume X and Y are independent and uniform over
its interval. The joint density is

fX,Y px, yq “ 4{a2, 0 ď x ď a{2, a{2 ď y ď a

Therefore, the solution is
PrpY ´ X ă a{3q “
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Lecture 33: Nov. 30

Last time

• Conditional Distributions

Today

• Course evaluations

• Final exam format poll

• Bivariate Transformation

Example: Buffon’s Needle A table is ruled with lines distance 1 unit apart. A needle of
length L ď 1 is thrown randomly on the table. What is the probability that the needle
intersects a line?
Solution:
Define two random variables:

• X: distance from low end of the needle to the nearest line above

• θ: angle from the vertical to the needle.

By “random”, we assume X and θ are independent, and

X „ Up0, 1q and θ „ U r´π{2, π{2s.

This means that
fX,θpx, θq “ 1{π, 0 ď x ď 1,´π{2 ď θ ď π{2

For the needle to intersect a line, we need X ă L cospθq.

Expectations of Independent RVs (Theorem 4.2.10) Let X and Y be independent rvs.

• For any A Ă R and B Ă R,

PrpX P A, Y P Bq “ PrpX P AqPrpY P Bq

i.e. the events tX P Au and tY P Bu are independent.

• Let gpxq be a function only of x and hpyq be a function only of y. Then

E rgpXqhpY qs “ rEgpXqs rEhpY qs

Proof:
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E rgpXqhpY qs “

ż 8

´8

ż 8

´8

gpxqhpyqfXY px, yqdxdy

“

ż 8

´8

ż 8

´8

gpxqhpyqfXpxqfY pyqdxdy

“

ˆ
ż 8

´8

gpxqfXpxqdx

˙ˆ
ż 8

´8

hpyqfY pyqdy

˙

“ rEgpXqs rEhpY qs

Example X, Y are independent

EpX2Y 3
q “ pEX2

qpEY 3
q

EpY 2Y 3
q ‰ pEY 2

qpEY 3
q

Bivariate Transformation

Functions of random variables Let pX, Y q be a bivariate rv with known distributions. Define
pU, V q by

U “ g1pX, Y q, V “ g2pX, Y q

Probability mapping For any Borel set B Ă R2,

Pr rpU, V q P Bs “ Pr rpX, Y q P As

where A is the inverse mapping of B, i.e.

A “ tpx, yq P R2 : pg1px, yq, g2px, yqq P Bu

The inverse is well defined even if the mapping is not bijective.

Example Let g1px, yq “ x, g2px, yq “ x2 ` y2.

Discrete RVs Suppose that pX, Y q is a discrete rv, i.e. the pmf is positive on a countable
set A. Then pU, V q is also discrete and takes values on a countable set B. Define

Au,v “ tpx, yq P A : g1px, yq “ u, g2px, yq “ vu

Then
fUV pu, vq “ PrpU “ u, V “ vq “

ÿ

px,yqPAu,v

fXY px, yq

Sum of two independent Poissons Let X „ Poissonpλ1q, Y „ Poissonpλ2q, independent,
and define

U “ X ` Y, V “ Y

• pX, Y q takes values in A “ t0, 1, 2, . . . u2
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• pU, V q takes values on B “ tpu, vq : v “ 0, 1, 2, . . . , u “ v, v ` 1, v ` 2, . . . u.

• For a particular pu, vq, Auv “ tpx, yq P A : x ` y “ u, y “ vu “ pu ´ v, uq.

The joint pmf of U and V is

fUV pu, vq “ fXY pu ´ v, vq “
e´λ1λu´v

1

pu ´ vq!

e´λ2λv
2

pvq!

The distribution of U “ X ` Y is the marginal

fUpuq “

u
ÿ

v“0

e´λ1λu´v
1

pu ´ vq!

e´λ2λv
2

pvq!

“
e´pλ1`λ2q

u!

u
ÿ

v“0

ˆ

u

v

˙

λu´v
1 λv

2

“
e´pλ1`λ2q

u!
pλ1 ` λ2q

u

We obtain that U is Poisson with parameter λ “ λ1 ` λ2.

Bivariate Transformations of Continuous RVs Suppose pX, Y q is continuous and the joint
transformation

u “ g1px, yq, v “ g2px, yq

is one-to-one and differentiable. Define the inverse mapping

x “ h1pu, vq, y “ h2pu, vq

Then
fUV pu, vq “ fXY ph1pu, vq, h2pu, vqq |Jpu, vq|

where Jpu, vq is the Jacobian of the transformation px, yq Ñ pu, vq given by

Jpu, vq “
Bpx, yq

Bpu, vq
“

ˇ

ˇ

ˇ

ˇ

ˇ

Bx
Bu

Bx
Bv

By
Bu

By
Bv

ˇ

ˇ

ˇ

ˇ

ˇ
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Lecture 34: Dec. 2

Last time

• Conditional Distributions

Today

• Course evaluations (4/38)

• Final exam format

– Final exam will be take home

– Open book, open note, not open internet

– Final exam will be released on Friday (12/09/2022) right after class

– Final exam due 23:59 pm on Friday 12/16/2022.

– Scan and submit your exam via email with a single pdf file

– Send your email to both your instructor and your TA.

– Submitted exams should be human-readable to receive non-zero scores.

• Bivariate Transformation

Bivariate Transformations of Continuous RVs Suppose pX, Y q is continuous and the joint
transformation

u “ g1px, yq, v “ g2px, yq

is one-to-one and differentiable. Define the inverse mapping

x “ h1pu, vq, y “ h2pu, vq

Then
fUV pu, vq “ fXY ph1pu, vq, h2pu, vqq |Jpu, vq|

where Jpu, vq is the Jacobian of the transformation px, yq Ñ pu, vq given by

Jpu, vq “
Bpx, yq

Bpu, vq
“

ˇ

ˇ

ˇ

ˇ

ˇ

Bx
Bu

Bx
Bv

By
Bu

By
Bv

ˇ

ˇ

ˇ

ˇ

ˇ

“
Bx

Bu

By

Bv
´

Bx

Bv

By

Bu

Example: Rotation of a bivariate normal vector Let X „ Np0, 1q, Y „ Np0, 1q, independent.
Define the rotation

U “ X cos θ ´ Y sin θ

V “ X sin θ ` Y cos θ

for fixed θ. Then U „ Np0, 1q, V „ Np0, 1q, independent.
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Proof:
The range of pX, Y q is R2. The range of pU, V q is R2. Need the inverse transformation

X “ U cos θ ` V sin θ

Y “ ´U sin θ ` V cos θ

with Jacobian

Jpu, vq “

ˇ

ˇ

ˇ

ˇ

ˇ

Bx
Bu

Bx
Bv

By
Bu

By
Bv

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

cos θ sin θ

´ sin θ cos θ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 1

The joint pdf of pX, Y q is

fXY px, yq “
1

?
2π

e´x2{2
¨

1
?
2π

e´y2{2
“

1

2π
e´px2`y2q{2

The joint pdf of pU, V q is

fUV pu, vq “
1

2π
e´rpu cos θ`v sin θq2`p´u sin θ`v cos θq2s{2

¨ |1|

“
1

2π
e´pu2`v2q{2

“
1

?
2π

e´u2{2
¨

1
?
2π

e´v2{2

so U „ Np0, 1q, V „ Np0, 1q, and U and V are independent.

Functions of independent random variables (Theorem 4.3.5) Let X and Y be independent
rvs. Let g : R Ñ R and h : R Ñ R be functions. Then the random variables U “ gpXq and
V “ hpY q are independent.

Sum of two independent rvs Suppose X and Y are independent. What is the distribution
of Z “ X ` Y ? In general:

FZpzq “ PrpX ` Y ď zq “ Prptpx, yq such that x ` y ď zuq

Various approaches:

• bivariate transformation method (continuous and discrete)

• Discrete convolution

fZpzq “
ÿ

x`y“z

fXpxqfY pyq “
ÿ

x

fXpxqfY pz ´ xq

• Continuous convolution (Section 5.2)

• MGF method (continuous and discrete)
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Example (Sum of two independent Poissons) Define X, Y to be two independent random
variables having Poisson distributions with parameters λi, i “ 1, 2. Then:

fX,Y px, yq “
e´λ1λx

1

x!

e´λ2λy
2

y!
, x, y “ 0, 1, 2, . . .

The distribution of S “ X ` Y is

fSpsq “

s
ÿ

x“0

e´λ1λx
1

x!

e´λ2λs´x
2

ps ´ xq!

“
e´pλ1`λ2q

s!

s
ÿ

x“0

ˆ

s

x

˙

λx
1λ

s´x
2

“
e´pλ1`λ2q

s!
pλ1 ` λ2q

s

Again, S is Poisson with parameter λ “ λ1 ` λ2.

Moment generating function (Theorem 4.2.12) Let X and Y be independent rvs with mgfs
MXp¨q and MY p¨q, respectively. Then the mgf of Z “ X ` Y is

MZptq “ MXptqMY ptq

Proof:

MZptq “ E exppZtq “ Etexp rpX ` Y qtsu

“ ErexppXtq exppY tqs “ ErexppXtqs ¨ ErexppY tqs

“ MXptqMY ptq

Corollary: If X and Y are independent and Z “ X ´ Y ,

MZptq “ MXptqMY p´tq

Example (sum of two independent Poissons) SupposeX „ PoissonpλXq and Y „ PoissonpλY q

and put Z “ X ` Y . Then, Z „ PoissonpλX ` λY q. Proof:

MZptq “ exp
“

λXpet ´ 1q
‰

exp
“

λY pet ´ 1q
‰

“ exp
“

pλX ` λY qpet ´ 1q
‰

Example (sum of two independent normals) Suppose X „ Npµx, σ
2
xq and Y „ Npµy, σ

2
yq

and X and Y are independent and Z “ X ` Y . Then

Z „ Npµx ` µy, σ
2
x ` σ2

yq

Proof:

MZptq “ exp

ˆ

µxt `
1

2
σ2
xt

2

˙

exp

ˆ

µyt `
1

2
σ2
yt

2

˙

“ exp

„

pµx ` µyqt `
1

2
pσ2

x ` σ2
yqt2

ȷ
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Example (sum of two independent gammas) Suppose X „ Γpαx, βq and independently
Y „ Γpαy, βq. Let Z “ X ` Y . Then Z „ Γppαx ` αyq, βq.
Proof:

MZptq “

ˆ

1

1 ´ βt

˙αx
ˆ

1

1 ´ βt

˙αy

“

ˆ

1

1 ´ βt

˙αx`αy

Remember that

• If α “ 1 we have an exponential with parameter β.

• If α “ n{2 and β “ 2, we have a χ2pnq (with n d.f.). The above result states that
χ2pn1q ` χ2pn2q “ χ2pn1 ` n2q.
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Lecture 35: Dec 05

Last time

• MGF

Today

• Course evaluations (6/38)

• Final exam format

– Final exam will be take home

– Open book, open note, not open internet

– Final exam will be released on Friday (12/09/2022) right after class

– Final exam due 23:59 pm on Friday 12/16/2022.

– Scan and submit your exam via email with a single pdf file

– Send your email to both your instructor and your TA.

– Submitted exams should be human-readable to receive non-zero scores.

• MGF cont.

• Covariance and Correlation

Moment generating function (Theorem 4.2.12) Let X and Y be independent rvs with mgfs
MXp¨q and MY p¨q, respectively. Then the mgf of Z “ X ` Y is

MZptq “ MXptqMY ptq

Proof:

MZptq “ E exppZtq “ Etexp rpX ` Y qtsu

“ ErexppXtq exppY tqs “ ErexppXtqs ¨ ErexppY tqs

“ MXptqMY ptq

Corollary: If X and Y are independent and Z “ X ´ Y ,

MZptq “ MXptqMY p´tq

Example (sum of two independent Poissons) SupposeX „ PoissonpλXq and Y „ PoissonpλY q

and put Z “ X ` Y . Then, Z „ PoissonpλX ` λY q. Proof:

MZptq “ exp
“

λXpet ´ 1q
‰

exp
“

λY pet ´ 1q
‰

“ exp
“

pλX ` λY qpet ´ 1q
‰
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Example (sum of two independent normals) Suppose X „ Npµx, σ
2
xq and Y „ Npµy, σ

2
yq

and X and Y are independent and Z “ X ` Y . Then

Z „ Npµx ` µy, σ
2
x ` σ2

yq

Proof:

MZptq “ exp

ˆ

µxt `
1

2
σ2
xt

2

˙

exp

ˆ

µyt `
1

2
σ2
yt

2

˙

“ exp

„

pµx ` µyqt `
1

2
pσ2

x ` σ2
yqt2

ȷ

Example (sum of two independent gammas) Suppose X „ Γpαx, βq and independently
Y „ Γpαy, βq. Let Z “ X ` Y . Then Z „ Γppαx ` αyq, βq.
Proof:

MZptq “

ˆ

1

1 ´ βt

˙αx
ˆ

1

1 ´ βt

˙αy

“

ˆ

1

1 ´ βt

˙αx`αy

Remember that

• If α “ 1 we have an exponential with parameter β.

• If α “ n{2 and β “ 2, we have a χ2pnq (with n d.f.). The above result states that
χ2pn1q ` χ2pn2q “ χ2pn1 ` n2q.

Covariance and Correlation Let X and Y be two random variables with respective means
µX , µY and variances σ2

X ą 0 and σ2
Y ą 0, all assumed to exist.

• The covariance of X and Y is

CovpX, Y q “ E rpX ´ µXqpY ´ µY qs “ σXY

• The correlation between X and Y is

CorpX, Y q “
CovpX, Y q

a

V arpXqV arpY q

also written as

ρXY “
σXY

σXσY

“ E

„ˆ

X ´ µX

σX

˙ˆ

Y ´ µY

σY

˙ȷ
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Properties Let c be a constant:

1. CovpX,Xq “ V arpXq, CorpX,Xq “ 1

2. CovpX, Y q “ CovpY,Xq, CorpX, Y q “ CorpY,Xq

3. CovpX, cq “ 0, CorpX, cq “ 0

4. CovpX, Y q “ EpXY q ´ EpXqEpY q

5. Let Xc “ X ´ µX , Yc “ Y ´ µY . Then

CovpX, Y q “ CovpXc, Ycq “ EpXcYcq

CorpX, Y q “ CorpXc, Ycq

6. Let X̃ “ pX ´ µXq{σX , Ỹ “ pY ´ µY q{σY . Then,

CorpX, Y q “ CorpX̃, Ỹ q “ CovpX̃, Ỹ q “ EpX̃Ỹ q

Independent vs. Uncorrelated

• X and Y are called uncorrelated iff

CovpX, Y q “ 0 or equivalently ρXY “ 0

• If X and Y are independent and CovpX, Y q exists, then CovpX, Y q “ 0.

• If X and Y are uncorrelated, this does not imply that they are independent.

Example X „ U r´1, 1s, Y “ X2. Then CovpX, Y q “ 0 but X, Y are not independent.

Correlation coefficient For any random variables X and Y ,

1. ´1 ď ρXY ď 1

2. |ρXY | “ 1 if and only if Da ‰ 0 and b such that

PrpY “ aX ` bq “ 1.

if ρXY “ 1 then a ą 0, and if ρXY “ ´1, then a ă 0.

proof:
Let X̃ “ pX ´ µXq{σX , Ỹ “ pY ´ µY q{σY . Then CorpX, Y q “ EpX̃Ỹ q,

1.
0 ď EpX̃ ´ Ỹ q2 “ 1 ` 1 ´ 2EpX̃Ỹ q ñ EpX̃Ỹ q ď 1

0 ď EpX̃ ` Ỹ q2 “ 1 ` 1 ` 2EpX̃Ỹ q ñ ´1 ď EpX̃Ỹ q

2.
ρXY “ 1 ðñ PrpỸ “ X̃q “ 1 ñ a ą 0

ρXY “ ´1 ðñ PrpỸ “ ´X̃q “ 1 ñ a ă 0
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Lecture 36: Dec 7

Last time

• MGF cont.

• Covariance and Correlation

Today

• Course evaluations (13/38)

• Final exam format

– Final exam will be take home

– Open book, open note, not open internet

– Final exam will be released on Friday (12/09/2022) right after class

– Final exam due 23:59 pm on Friday 12/16/2022.

– Scan and submit your exam via email with a single pdf file

– Send your email to both your instructor and your TA.

– Submitted exams should be human-readable to receive non-zero scores.

• Random Samples

• Convergence

• Central Limit Theorem

Random Samples

Definition The random variables X1, . . . , Xn are called a random sample of size n from
the population fpxq if X1, . . . , Xn are mutually independent and identically distributed (iid)
random variables with the same pdf or pmf fpxq.

If X1, . . . , Xn are iid, then their joint pdf or pmf is

fpx1, . . . , xnq “ fpx1qfpx2q . . . fpxnq “

n
ź

j“1

fpxjq

Statistics Let X1, . . . , Xn be a random sample and let T px1, . . . , xnq be a function defined
on Rn. Then the random variable Y “ T pX1, . . . , Xnq is called a statistic. The probability
distribution of Y is called the sampling distribution of Y .

Note: T is only a function of px1, . . . , xnq, no parameters.
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Examples

sample mean X̄ “ 1
n

n
ř

j“1

Xj

sample variance S2 “ 1
n´1

n
ř

j“1

pXj ´ X̄q2

sample standard deviation S “
?
S2

minimum Xp1q “ min
1ďiďn

Xi

Properties Let x1, . . . , xn be n numbers and define

x̄ “
1

n

n
ÿ

j“1

xj, s2 “
1

n ´ 1

n
ÿ

j“1

pxj ´ x̄q
2

Then

min
a

n
ÿ

j“1

pxj ´ aq
2

“

n
ÿ

j“1

pxj ´ x̄q
2

pn ´ 1qs2 “

n
ÿ

j“1

pxj ´ x̄q
2

“

n
ÿ

j“1

x2
j ´ nx̄2

Residuals Lemma: Let X1, . . . , Xn be a random sample from a population with mean µ and
variance σ2. Define the residuals Ri “ Xi ´ X̄. Then

EpRiq “ 0, V arpRiq “ n´1
n
σ2

CovpRi, X̄q “ 0, CovpRi, Rjq “ ´σ2{n if i ‰ j

Theorem Let X1, . . . , Xn be a random sample from a population with mgf MXptq. Then
the mgf of the sample mean is

MX̄ptq “ rMXpt{nqs
n

Convergence

Convergence in Probability A sequence of random variables X1, . . . , Xn converges in proba-
bility to a random variable X, denoted

Xn
p

Ñ X

if for every ϵ ą 0,
lim
nÑ8

Prp|Xn ´ X| ă ϵq “ 1

or equivalently
lim
nÑ8

Prp|Xn ´ X| ą ϵq “ 0

In other words, Xn is more and more likely to be close to X, or less and less likely to be far
from X.
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Example Let Xn “ X ` ϵn, where ϵn „ Np0, 1{nq and X is an arbitrary random variable.
Then, as n Ñ 8,

Xn
p

Ñ X

Weak law of large numbers (WLLN) Let Y1, . . . , Yn be iid with common mean µ and variance
σ2. Then, as n Ñ 8,

Ȳn “
1

n

ÿ

j“1

Yj
p

Ñ µ

Proof:
The proof is quite simple, being a straightforward application of Chebychev’s Inequality. We
have, for every ϵ ą 0,

Prp|Ȳn ´ µ| ě ϵq “ Prp|Ȳn ´ µ|
2

ě ϵ2q ď
EpȲ ´ µq2

ϵ2
“

V arpȲ q

ϵ2
“

σ2

nϵ2
Ñ 0 as n Ñ 8

Convergence in Distribution A sequence of random variables X1, . . . , Xn converges in distri-
bution to a random variable X, denoted

XN
d

Ñ X

if
lim
nÑ8

FXnpxq “ FXpxq

This is also called convergence in law or weak convergence. In other words, the distribution
of Xn is closer and closer to the distribution of X.

Relation between “in distribution” and “in probability” Theorem:

1. Convergence in probability implies convergence in distribution:

Xn
p

Ñ X ñ Xn
d

Ñ X

2. Suppose Xn
d

Ñ X where X has a degenerate distribution, i.e. PrtX “ au “ 1 for some
a P R. Then,

Xn
d

Ñ a ñ Xn
p

Ñ a

Convergence in Distribution via Convergence of Mgfs Theorem: Suppose the mgf Mnptq of Yn

exists for |t| ă h, and the mgf Mptq of Y exists for |t| ă h1 ă h. Then,

Yn
d

Ñ Y ðñ lim
nÑ8

Mnptq “ Mptq, |t| ă h1

Example Let Xλ „ Poissonpλq. Then, as λ Ñ 8,

Xλ ´ λ

λ

p
Ñ 0

Xλ ´ λ
?
λ

d
Ñ Np0, 1q
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Central Limit Theorem Let X1, X2, . . . , Xn be a sequence of iid random variables whose mgfs
exist in a neighborhood of 0 (that is, MXi

ptq exists for |t| ă h, for some positive h ą 0). Let
EXi “ µ and V arpXiq “ σ2 ą 0. (Both µ and σ2 are finite since the mgf exists) Define

X̄n “ 1
n

n
ř

i“1

Xi. Let Gnpxq denote the cdf of
?
npX̄n ´ µq{σ. Then, for any x, ´8 ă x ă 8,

lim
nÑ8

Gnpxq “

ż x

´8

1
?
2π

e´y2{2dy;

that is,
?
npX̄n ´µq{σ has a limiting standard normal distribution, in other words,

?
npX̄n ´

µq{σ
d

Ñ Np0, 1q

Proof:
Define Yi “ pXi ´ µq{σ, and let MY ptq denote the common mgf of Yis, which exists for
|t| ă σh and MY ptq “ M 1

σ
Xi´µ{σptq “ e´

µ
σ
tMXp t

σ
q. Since

?
npX̄nq

σ
“

1
?
n

n
ÿ

i“1

Yi,

we have,
M?

npX̄n´µq{σptq “ M n
ř

i“1
Yi{

?
n
ptq

“ M n
ř

i“1
Yi

pt{
?
nq

“
“

MY pt{
?
nq
‰n

.

We now expand MY pt{
?
nq in a Taylor series (power series) around 0.

MY p
t

?
n

q “

8
ÿ

k“0

M
pkq

Y p0q
pt{

?
nqk

k!
,

where M
pkq

Y p0q “ pdk{dtkqMY ptq|t“0. Since the mgfs exist for |t| ă h, the power series
expansion is valid if t ă

?
nσh.

Using the facts that M
p0q

Y “ 1, M
p1q

Y “ 0, and M
p2q

Y “ 1 (by construction, the mean and
variance of Y are 0 and 1), we have

MY p
t

?
n

q “ 1 `
pt{

?
nq2

2!
` RY p

t
?
n

q,

where RY is the remainder term in the Taylor expansion such that

lim
nÑ8

RY pt{
?
nq

pt{
?
nq2

“ 0.

Therefore, for any fixed t, we can write

lim
nÑ8

„

MY p
t

?
n

q

ȷn

“ lim
nÑ8

„

1 `
pt{

?
nq2

2!
` RY p

t
?
n

q

ȷn

“ lim
nÑ8

„

1 `
1

n

ˆ

t2

2
` nRY p

t
?
n

q

˙ȷn

“ et
2{2
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