Math 3070/6070 Homework 6
 Due: No submission

1. (4.1) A random point (X, Y) is distributed uniformly on the square with vertices $(1,1),(1,-1)$, $(-1,1)$, and $(-1,-1)$. That is, the joint pdf if $f(x, y)=\frac{1}{4}$ on the square. Determine the probabilities of the following events.
2. $X^{2}+Y^{2}<1$
3. $2 X-Y>0$
4. $|X+Y|<2$
5. (4.5)
6. Find $\operatorname{Pr}(X>\sqrt{Y})$ if X and Y are jointly distributed with pdf

$$
f(x, y)=x+y, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1
$$

2. Find $\operatorname{Pr}\left(X^{2}<Y<X\right)$ if X and Y are jointly distributed with pdf

$$
f(X, y)=2 x, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1
$$

3. (4.11) Let $U=$ the number of trials needed to get the first head and $V=$ the number of trials needed to get two heads in repeated tosses of a fair coin. Are U and V independent random variables?
4. (4.17) Let X be an exponential(1) random variable, and define Y to be the integer part of $X+1$, that is

$$
Y=i+1 \quad \text { if and only if } \quad i \leq X<i+1, \quad i=0,1,2, \ldots
$$

1. Find the distribution of Y. What well-known distribution does Y have?
2. Find the conditional distribution of $X-4$ given $Y \geq 5$.
3. (4.20) X_{1} and X_{2} are independent $N\left(0, \sigma^{2}\right)$ random variables.
4. Find the joint distribution of Y_{1} and Y_{2}, where

$$
Y_{1}=X_{1}^{2}+X_{2}^{2} \quad \text { and } \quad Y_{2}=\frac{X_{1}}{\sqrt{Y_{1}}}
$$

2. Show that Y_{1} and Y_{2} are independent.
