Math 3070/6070 Homework 4
 Due: Oct 28th, 2022

1. (2.13) Consider a sequence of independent coin flips, each of which has probability p of being heads. Define a random variable X as the length of the run (of either heads or tails) started by the first trial. (For example, $X=3$ if either TTTH or HHHT is observed.) Find the distribution of X and find $E X$.
2. (2.15) Suppose the pdf $f_{X}(x)$ of a random variable X is an even function. $\left(f_{X}(x)\right.$ is an even function if $f_{X}(x)=f_{X}(-x)$ for every x.) Show that
3. X and $-X$ are identically distributed.
4. $M_{X}(t)$ is symmetric about 0 .
5. (2.33) In each of the following cases verify the expression given for the moment generating function, and in each case use the mgf to calculate $E X$ and $\operatorname{Var}(X)$.
6. $\operatorname{Pr}(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}, x=0,1, \ldots ; \lambda>0$.
7. $\operatorname{Pr}(X=x)=p(1-p)^{x}, M_{X}(t)=\frac{p}{1-(1-p) e^{\epsilon}}, x=0,1, \ldots ; 0<p<1$.
8. $f_{X}(x)=\frac{e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}}{\sqrt{2 \pi} \sigma}, M_{X}(t)=e^{\mu t+\sigma^{2} t^{2} / 2},-\infty<x<\infty ;-\infty<\mu<\infty, \sigma>0$.
9. (3.3) The flow of traffic at certain street corners can sometimes be modeled as a sequence of Bernoulli trials by assuming that the probability of a car passing during any given second is a constant p and that there is no interaction between the passing of cars at different seconds. If we treat seconds as indivisible time units (trials), the Bernoulli model applies. Suppose a pedestrian can cross the street only if no car is to pass during the next 3 seconds. Find the probability that the pedestrian has to wait for exactly 4 seconds before starting to cross.
10. (3.12) Suppose X has a $\operatorname{Binomial}(n, p)$ distribution and let Y have a negative $\operatorname{binaomial}(r, p)$ distribution. Show that $F_{X}(r-1)=1-F_{Y}(n-r)$.
