Math 3070/6070 Homework 3
 Due: Oct 14th, 2022

1. (2.1) In each of the following find the pdf of Y. Show that the pdf integrates to 1 .
2. $Y=X^{3}$ and $f_{X}(x)=42 x^{5}(1-x), 0<x<1$
3. $Y=4 X+3$ and $f_{X}(x)=7 e^{-7 x}, 0<x<\infty$
4. $Y=X^{2}$ and $f_{X}(x)=30 x^{2}(1-x)^{2}, 0<x<1$
5. (2.2) In each of the following find the pdf of Y
6. $Y=X^{2}$ and $f_{X}(x)=1,0<x<1$
7. $Y=-\log (X)$ and X has pdf

$$
f_{X}(x)=\frac{(n+m+1)!}{n!m!} x^{n}(1-x)^{m}, \quad 0<x<1, m, n \text { positive integers }
$$

3. $Y=e^{X}$ and X has pdf

$$
f_{X}(x)=\frac{1}{\sigma^{2}} x e^{-(x / \sigma)^{2} / 2}, \quad 0<x<\infty, \sigma^{2} \text { a positive constant }
$$

3. (2.4) Let λ be a fixed positive constant, and define the function $f(x)$ by $f(x)=\frac{1}{2} \lambda e^{-\lambda x}$ if $x \geq 0$ and $f(x)=\frac{1}{2} \lambda e^{\lambda x}$ if $x<0$.
4. Verify that $f(x)$ is a pdf.
5. If X is a random variable with pdf given by $f(x)$, find $\operatorname{Pr}(X<t)$ for all t. Evaluate all integrals.
6. Find $\operatorname{Pr}(|X|<t)$ for all t. Evaluate all integrals.
7. (2.6) In each of the following find the pdf of Y and show that the pdf integrates to 1.
8. $f_{X}(x)=\frac{1}{2} e^{-|x|},-\infty<x<\infty ; Y=|X|^{3}$
9. $f_{X}(x)=\frac{3}{8}(x+1)^{2},-1<x<1 ; Y=1-X^{2}$
10. $f_{X}(x)=\frac{3}{8}(x+1)^{2},-1<x<1 ; Y=1-X^{2}$ if $X \leq 0$ and $Y=1-X$ if $X>0$
11. (2.9) If the random variable X has pdf

$$
f(x)= \begin{cases}\frac{x-1}{2}, & 1<x<3 \\ 0, & \text { otherwise }\end{cases}
$$

find a monotone function $u(x)$ such that the random variable $Y=u(X)$ has a uniform $(0,1)$ distribution.

